Enhanced removal of arsenic and cadmium from contaminated soils using a soluble humic substance coupled with chemical reductant.
Loading...
Date
1/03/2023
Open Access Location
Journal Title
Journal ISSN
Volume Title
Publisher
Rights
Abstract
Soil washing is an efficient, economical, and green remediation technology for removing several heavy metal (loid)s from contaminated industrial sites. The extraction of green and efficient washing agents from low-cost feedback is crucially important. In this study, a soluble humic substance (HS) extracted from leonardite was first tested to wash soils (red soil, fluvo-aquic soil, and black soil) heavily contaminated with arsenic (As) and cadmium (Cd). A D-optimal mixture design was investigated to optimize the washing parameters. The optimum removal efficiencies of As and Cd by single HS washing were found to be 52.58%-60.20% and 58.52%-86.69%, respectively. Furthermore, a two-step sequential washing with chemical reductant NH2OH•HCl coupled with HS (NH2OH•HCl + HS) was performed to improve the removal efficiency of As and Cd. The two-step sequential washing significantly enhanced the removal of As and Cd to 75.25%-81.53% and 64.53%-97.64%, which makes the residual As and Cd in soil below the risk control standards for construction land. The two-step sequential washing also effectively controlled the mobility and bioavailability of residual As and Cd. However, the activities of soil catalase and urease significantly decreased after the NH2OH•HCl + HS washing. Follow-up measures such as soil neutralization could be applied to relieve and restore the soil enzyme activity. In general, the two-step sequential soil washing with NH2OH•HCl + HS is a fast and efficient method for simultaneously removing high content of As and Cd from contaminated soils.
Description
CAUL read and publish agreement 2023
Keywords
Arsenic, Cadmium, Chemical reductant, Humic substance, Sequential soil washing, Humic Substances, Cadmium, Arsenic, Reducing Agents, Metals, Heavy, Soil, Soil Pollutants, Environmental Restoration and Remediation
Citation
Environ Res, 2023, 220 pp. 115120 - ?