Journal Articles
Permanent URI for this collection
Browse
Browsing Journal Articles by Subject "03 Chemical Sciences"
Now showing 1 - 14 of 14
Results Per Page
Sort Options
- ItemComparative PIV and LDA studies of Newtonian and non-Newtonian flows in an agitated tank(Springer Verlag, 4/10/2017) Story A; Jaworski Z; Simons MJH; Nowak EThe paper presents results of an experimental study of the fluid velocity field in a stirred tank equipped with a Prochem Maxflo T (PMT) type impeller which was rotating at a constant frequency of N = 4.1 or 8.2 s−1 inducing transitional (Re = 499 or 1307) or turbulent (Re = 2.43 × 104) flow of the fluid. The experiments were performed for a Newtonian fluid (water) and a non-Newtonian fluid (0.2 wt% aqueous solution of carboxymethyl cellulose, CMC) exhibiting mild viscoelastic properties. Measurements were carried out using laser light scattering on tracer particles which follow the flow (2-D PIV). For both the water and the CMC solution one primary and two secondary circulation loops were observed within the fluid volume; however, the secondary loops were characterized by much lower intensity. The applied PMT-type impeller produced in the Newtonian fluid an axial primary flow, whilst in the non-Newtonian fluid the flow was more radial. The results obtained in the form of the local mean velocity components were in satisfactory agreement with the literature data from LDA. Distribution of the shear rate in the studied system was also analyzed. For the non-Newtonian fluid an area was computed where the elastic force dominates over the viscous one. The area was nearly matching the region occupied by the primary circulation loop.
- ItemEnhanced removal of arsenic and cadmium from contaminated soils using a soluble humic substance coupled with chemical reductant.(1/03/2023) Wei J; Tu C; Xia F; Yang L; Chen Q; Chen Y; Deng S; Yuan G; Wang H; Jeyakumar P; Bhatnagar ASoil washing is an efficient, economical, and green remediation technology for removing several heavy metal (loid)s from contaminated industrial sites. The extraction of green and efficient washing agents from low-cost feedback is crucially important. In this study, a soluble humic substance (HS) extracted from leonardite was first tested to wash soils (red soil, fluvo-aquic soil, and black soil) heavily contaminated with arsenic (As) and cadmium (Cd). A D-optimal mixture design was investigated to optimize the washing parameters. The optimum removal efficiencies of As and Cd by single HS washing were found to be 52.58%-60.20% and 58.52%-86.69%, respectively. Furthermore, a two-step sequential washing with chemical reductant NH2OH•HCl coupled with HS (NH2OH•HCl + HS) was performed to improve the removal efficiency of As and Cd. The two-step sequential washing significantly enhanced the removal of As and Cd to 75.25%-81.53% and 64.53%-97.64%, which makes the residual As and Cd in soil below the risk control standards for construction land. The two-step sequential washing also effectively controlled the mobility and bioavailability of residual As and Cd. However, the activities of soil catalase and urease significantly decreased after the NH2OH•HCl + HS washing. Follow-up measures such as soil neutralization could be applied to relieve and restore the soil enzyme activity. In general, the two-step sequential soil washing with NH2OH•HCl + HS is a fast and efficient method for simultaneously removing high content of As and Cd from contaminated soils.
- ItemExposure to drinking water trihalomethanes and nitrate and the risk of brain tumours in young people(Elsevier Inc, 2021-09) Zumel-Marne A; Castaño-Vinyals G; Alguacil J; Villanueva CM; Maule M; Gracia-Lavedan E; Momoli F; Krewski D; Mohipp C; Petridou E; Bouka E; Merletti F; Migliore E; Piro S; Ha M; 't Mannetje A; Eng A; Aragones N; Cardis EBrain tumours (BTs) are one of the most frequent tumour types in young people. We explored the association between tap water, exposure to trihalomethanes (THM) and nitrate and neuroepithelial BT risk in young people. Analysis of tap water consumption were based on 321 cases and 919 appendicitis controls (10-24 years old) from 6 of the 14 participating countries in the international MOBI-Kids case-control study (2010-2016). Available historical residential tap water concentrations of THMs and nitrate, available from 3 countries for 86 cases and 352 controls and 85 cases and 343 for nitrate, respectively, were modelled and combined with the study subjects' personal consumption patterns to estimate ingestion and residential exposure levels in the study population (both pre- and postnatal). The mean age of participants was 16.6 years old and 56% were male. The highest levels and widest ranges for THMs were found in Spain (residential and ingested) and Italy and in Korea for nitrate. There was no association between BT and the amount of tap water consumed and the showering/bathing frequency. Odds Ratios (ORs) for BT in relation to both pre- and postnatal residential and ingestion levels of THMs were systematically below 1 (OR = 0.37 (0.08-1.73)) for postnatal average residential THMs higher than 66 μg/L. For nitrate, all ORs were above 1 (OR = 1.80 (0.91-3.55)) for postnatal average residential nitrate levels higher than 8.5 mg/L, with a suggestion of a trend of increased risk of neuroepithelial BTs with increasing residential nitrate levels in tap water, which appeared stronger in early in life. This, to our knowledge, is the first study on this topic in young people. Further research is required to clarify the observed associations.
- ItemFeeding experience affects the behavioral response of polyphagous gypsy moth caterpillars to herbivore-induced poplar volatiles(Springer Verlag (Germany), 2016-05) McCormick AL; Reinecke A; Gershenzon J; Unsicker SPlant volatiles influence host selection of herbivorous insects. Since volatiles often vary in space and time, herbivores (especially polyphagous ones) may be able to use these compounds as cues to track variation in host plant quality based on their innate abilities and previous experience. We investigated the behavioral response of naïve (fed on artificial diet) and experienced (fed on poplar) gypsy moth (Lymantria dispar) caterpillars, a polyphagous species, towards constitutive and herbivore-induced black poplar (Populus nigra) volatiles at different stages of herbivore attack. In Y-tube olfactometer assays, both naïve and experienced caterpillars were attracted to constitutive volatiles and volatiles released after short-term herbivory (up to 6 hr). Naïve caterpillars also were attracted to volatiles released after longer-term herbivory (24-30 hr), but experienced caterpillars preferred the odor of undamaged foliage. A multivariate statistical analysis comparing the volatile emission of undamaged plants vs. plants after short and longer-term herbivory, suggested various compounds as being responsible for distinguishing between the odors of these plants. Ten compounds were selected for individual testing of caterpillar behavioral responses in a four-arm olfactometer. Naïve caterpillars spent more time in arms containing (Z)-3-hexenol and (Z)-3-hexenyl acetate than in solvent permeated arms, while avoiding benzyl cyanide and salicyl aldehyde. Experienced caterpillars avoided benzyl cyanide and preferred (Z)-3-hexenyl acetate and the homoterpene (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) over solvent. Only responses to DMNT were significantly different when comparing experienced and naïve caterpillars. The results show that gypsy moth caterpillars display an innate behavioral response towards constitutive and herbivore-induced plant volatiles, but also that larval behavior is plastic and can be modulated by previous feeding experience.
- ItemIntra-molecular lysine-arginine derived advanced glycation end-product cross-linking in Type I collagen: A molecular dynamics simulation study.(2016-11) Collier TA; Nash A; Birch HL; de Leeuw NHCovalently cross-linked advanced glycation end products (AGE) are among the major post-translational modifications to proteins as a result of non-enzymatic glycation. The formation of AGEs has been shown to have adverse effects on the properties of the collagenous tissue; they are even linked to a number of age related disorders. Little is known about the sites at which these AGEs form or why certain sites within the collagen are energetically more favourable than others. In this study we have used a proven fully atomistic molecular dynamics approach to identify six sites where the formation of the intra-molecular 3-deoxyglucosone-derived imidazolium cross-link (DOGDIC) is energetically favourable. We have also conducted a comparison of these positions with those of the more abundant glucosepane cross-link, to determine any site preference. We show that when we consider both lysine and arginine AGEs, they exhibit a prevalence to form within the gap region of the collagen fibril.
- ItemLet the powers combine(Elsevier, 5/01/2016) Allison JRLipoproteins play a variety of roles in bacterial physiology and virulence. Correct localization is essential for lipoprotein function, yet the mechanisms by which this occurs are not yet fully understood. In this issue of Structure, East et al. (2016) describe the factors that govern secretion of the PulA lipoprotein.
- ItemPartial Biodegradable Blend for Fused Filament Fabrication: In-Process Thermal and Post-Printing Moisture Resistance(MDPI AG, 9/04/2022) Harris M; Mohsin H; Naveed R; Potgieter J-G; Ishfaq K; Ray S; Guen M-JL; Archer R; Arif KDespite the extensive research, the moisture-based degradation of the 3D-printed polypropylene and polylactic acid blend is not yet reported. This research is a part of study reported on partial biodegradable blends proposed for large-scale additive manufacturing applications. However, the previous work does not provide information about the stability of the proposed blend system against moisture-based degradation. Therefore, this research presents a combination of excessive physical interlocking and minimum chemical grafting in a partial biodegradable blend to achieve stability against in-process thermal and moisture-based degradation. In this regard, a blend of polylactic acid and polypropylene compatibilized with polyethylene graft maleic anhydride is presented for fused filament fabrication. The research implements, for the first time, an ANOVA for combined thermal and moisture-based degradation. The results are explained using thermochemical and microscopic techniques. Scanning electron microscopy is used for analyzing the printed blend. Fourier transform infrared spectroscopy has allowed studying the intermolecular interactions due to the partial blending and degradation mechanism. Differential scanning calorimetry analyzes the blending (physical interlocking or chemical grafting) and thermochemical effects of the degradation mechanism. The thermogravimetric analysis further validates the physical interlocking and chemical grafting. The novel concept of partial blending with excessive interlocking reports high mechanical stability against moisture-based degradation.
- ItemPartial Biodegradable Blend with High Stability against Biodegradation for Fused Deposition Modeling(MDPI AG, 11/04/2022) Harris M; Mohsin H; Potgieter J; Ishfaq K; Archer R; Chen Q; De silva K; Guen M-JL; Wilson R; Arif KThis research presents a partial biodegradable polymeric blend aimed for large-scale fused deposition modeling (FDM). The literature reports partial biodegradable blends with high contents of fossil fuel-based polymers (>20%) that make them unfriendly to the ecosystem. Furthermore, the reported polymer systems neither present good mechanical strength nor have been investigated in vulnerable environments that results in biodegradation. This research, as a continuity of previous work, presents the stability against biodegradability of a partial biodegradable blend prepared with polylactic acid (PLA) and polypropylene (PP). The blend is designed with intended excess physical interlocking and sufficient chemical grafting, which has only been investigated for thermal and hydrolytic degradation before by the same authors. The research presents, for the first time, ANOVA analysis for the statistical evaluation of endurance against biodegradability. The statistical results are complemented with thermochemical and visual analysis. Fourier transform infrared spectroscopy (FTIR) determines the signs of intermolecular interactions that are further confirmed by differential scanning calorimetry (DSC). The thermochemical interactions observed in FTIR and DSC are validated with thermogravimetric analysis (TGA). Scanning electron microscopy (SEM) is also used as a visual technique to affirm the physical interlocking. It is concluded that the blend exhibits high stability against soil biodegradation in terms of high mechanical strength and high mass retention percentage.
- ItemPartial Polymer Blend for Fused Filament Fabrication with High Thermal Stability(MDPI AG, 30/09/2021) Harris M; Potgieter J; Mohsin H; Ray S; Chen JQ; Arif KThe materials for large scale fused filament fabrication (FFF) are not yet designed to resist thermal degradation. This research presents a novel polymer blend of polylactic acid with polypropylene for FFF, purposefully designed with minimum feasible chemical grafting and overwhelming physical interlocking to sustain thermal degradation. Multi-level general full factorial ANOVA is performed for the analysis of thermal effects. The statistical results are further investigated and validated using different thermo-chemical and visual techniques. For example, Fourier transform infrared spectroscopy (FTIR) analyzes the effects of blending and degradation on intermolecular interactions. Differential scanning calorimetry (DSC) investigates the nature of blending (grafting or interlocking) and effects of degradation on thermal properties. Thermogravimetric analysis (TGA) validates the extent of chemical grafting and physical interlocking detected in FTIR and DSC. Scanning electron microscopy (SEM) is used to analyze the morphology and phase separation. The novel approach of overwhelmed physical interlocking and minimum chemical grafting for manufacturing 3D printing blends results in high structural stability (mechanical and intermolecular) against thermal degradation as compared to neat PLA.
- ItemRecall of mobile phone usage and laterality in young people: The multinational Mobi-Expo study.(Elsevier B.V., 26/04/2018) Goedhart G; van Wel L; Langer CE; de Llobet Viladoms P; Wiart J; Hours M; Kromhout H; Benke G; Bouka E; Bruchim R; Choi K-H; Eng A; Ha M; Huss A; Kiyohara K; Kojimahara N; Krewski D; Lacour B; 't Mannetje A; Maule M; Migliore E; Mohipp C; Momoli F; Petridou ET; Radon K; Remen T; Sadetzki S; Sim M; Weinmann T; Cardis E; Vrijheid M; Vermeulen ROBJECTIVE: To study recall of mobile phone usage, including laterality and hands-free use, in young people. METHODS: Actual mobile phone use was recorded among volunteers aged between 10 and 24 years from 12 countries by the software application XMobiSense and was compared with self-reported mobile phone use at 6 and 18 months after using the application. The application recorded number and duration of voice calls, number of text messages, amount of data transfer, laterality (% of call time the phone was near the right or left side of the head, or neither), and hands-free usage. After data cleaning, 466 participants were available for the main analyses (recorded vs. self-reported phone use after 6 months). RESULTS: Participants were on average 18.6 years old (IQR 15.2-21.8 years). The Spearman correlation coefficients between recorded and self-reported (after 6 months) number and duration of voice calls were 0.68 and 0.65, respectively. Number of calls was on average underestimated by the participants (adjusted geometric mean ratio (GMR) self-report/recorded = 0.52, 95% CI = 0.47-0.58), while duration of calls was overestimated (GMR=1.32, 95%, CI = 1.15-1.52). The ratios significantly differed by country, age, maternal educational level, and level of reported phone use, but not by time of the interview (6 vs. 18 months). Individuals who reported low mobile phone use underestimated their use, while individuals who reported the highest level of phone use were more likely to overestimate their use. Individuals who reported using the phone mainly on the right side of the head used it more on the right (71.1%) than the left (28.9%) side. Self-reported left side users, however, used the phone only slightly more on the left (53.3%) than the right (46.7%) side. Recorded percentage hands-free use (headset, speaker mode, Bluetooth) increased with increasing self-reported frequency of hands-free device usage. Frequent (≥50% of call time) reported headset or speaker mode use corresponded with 17.1% and 17.2% of total call time, respectively, that was recorded as hands-free use. DISCUSSION: These results indicate that young people can recall phone use moderately well, with recall depending on the amount of phone use and participants' characteristics. The obtained information can be used to calibrate self-reported mobile use to improve estimation of radiofrequency exposure from mobile phones.
- ItemScaling properties of delay times in one-dimensional random media(3/01/2008) Bodyfelt JD; Méndez-Bermúdez JA; Chabanov A; Kottos TThe scaling properties of the inverse moments of Wigner delay times are investigated in finite one-dimensional (1D) random media with one channel attached to the boundary of the sample. We find that they follow a simple scaling law which is independent of the microscopic details of the random potential. Our theoretical considerations are confirmed numerically for systems as diverse as 1D disordered wires and optical lattices to microwave waveguides with correlated scatterers. © 2008 The American Physical Society.
- ItemSingle-molecule folding mechanisms of the apo- and Mg(2+)-bound states of human neuronal calcium sensor-1(Biophysical Society, 7/07/2015) Naqvi MM; Heidarsson PO; Rodriguez Otazo M; Mossa A; Kragelund BB; Cecconi CNeuronal calcium sensor-1 (NCS-1) is the primordial member of a family of proteins responsible primarily for sensing changes in neuronal Ca(2+) concentration. NCS-1 is a multispecific protein interacting with a number of binding partners in both calcium-dependent and independent manners, and acting in a variety of cellular processes in which it has been linked to a number of disorders such as schizophrenia and autism. Despite extensive studies on the Ca(2+)-activated state of NCS proteins, little is known about the conformational dynamics of the Mg(2+)-bound and apo states, both of which are populated, at least transiently, at resting Ca(2+) conditions. Here, we used optical tweezers to study the folding behavior of individual NCS-1 molecules in the presence of Mg(2+) and in the absence of divalent ions. Under tension, the Mg(2+)-bound state of NCS-1 unfolds and refolds in a three-state process by populating one intermediate state consisting of a folded C-domain and an unfolded N-domain. The interconversion at equilibrium between the different molecular states populated by NCS-1 was monitored in real time through constant-force measurements and the energy landscapes underlying the observed transitions were reconstructed through hidden Markov model analysis. Unlike what has been observed with the Ca(2+)-bound state, the presence of Mg(2+) allows both the N- and C-domain to fold through all-or-none transitions with similar refolding rates. In the absence of divalent ions, NCS-1 unfolds and refolds reversibly in a two-state reaction involving only the C-domain, whereas the N-domain has no detectable transitions. Overall, the results allowed us to trace the progression of NCS-1 folding along its energy landscapes and provided a solid platform for understanding the conformational dynamics of similar EF-hand proteins.
- ItemThe Structural and Functional Characterization of Mammalian ADP-dependent Glucokinase.(19/02/2016) Richter JP; Goroncy AK; Ronimus RS; Sutherland-Smith AJThe enzyme-catalyzed phosphorylation of glucose to glucose-6-phosphate is a reaction central to the metabolism of all life. ADP-dependent glucokinase (ADPGK) catalyzes glucose-6-phosphate production, utilizing ADP as a phosphoryl donor in contrast to the more well characterized ATP-requiring hexokinases. ADPGK is found in Archaea and metazoa; in Archaea, ADPGK participates in a glycolytic role, but a function in most eukaryotic cell types remains unknown. We have determined structures of the eukaryotic ADPGK revealing a ribokinase-like tertiary fold similar to archaeal orthologues but with significant differences in some secondary structural elements. Both the unliganded and the AMP-bound ADPGK structures are in the "open" conformation. The structures reveal the presence of a disulfide bond between conserved cysteines that is positioned at the nucleotide-binding loop of eukaryotic ADPGK. The AMP-bound ADPGK structure defines the nucleotide-binding site with one of the disulfide bond cysteines coordinating the AMP with its main chain atoms, a nucleotide-binding motif that appears unique to eukaryotic ADPGKs. Key amino acids at the active site are structurally conserved between mammalian and archaeal ADPGK, and site-directed mutagenesis has confirmed residues essential for enzymatic activity. ADPGK is substrate inhibited by high glucose concentration and shows high specificity for glucose, with no activity for other sugars, as determined by NMR spectroscopy, including 2-deoxyglucose, the glucose analogue used for tumor detection by positron emission tomography.
- ItemUnravelling the behaviour of curcumin nanoemulsions during in vitro digestion: Effect of the surface charge(Royal Society of Chemistry, 2013) Pinheiro AC; Lad M; Coimbra MA; Boland MJ; Vicente AA; Silva HDOil-in-water nanoemulsions containing curcumin were prepared through high-pressure homogenization using corn oil and three different emulsifiers: Tween 20 (non-ionic), Sodium Dodecyl Sulphate (SDS, anionic) and DodecylTrimethylAmmonium Bromide (DTAB, cationic). A human gastric simulator was used as the in vitro digestion model (in which the stomach, duodenum, jejunum and ileum steps were performed) to evaluate the impact of surface charge on the digestion of the curcumin nanoemulsions. This model allowed the simulation of continuous peristaltic movements and consequently enabled a more mechanically realistic simulation of the dynamic digestion process than simple stirred vessel models. The emulsifier charge had a significant effect on the droplet size, particle electric charge and microstructure of curcumin nanoemulsions during the simulated digestion, which consequently influenced the free fatty acid release and curcumin bioavailability. The results showed the positively charged DTAB-stabilized emulsions to be the least stable during the digestion process, exhibiting the largest increase in droplet size and eventual phase separation. This also contributed to the low bioavailability of curcumin. Conversely, emulsions stabilized with Tween 20 showed retention of emulsion structure (high surface area) and greater free fatty acid production, which could explain the increased curcumin bioavailability. The emulsifier charge influenced the lipid digestion process and the bioavailability of the bioactive compound incorporated, probably by altering the ability of bile salts and digestive enzymes to adsorb onto the emulsion surfaces, thus altering the droplet size (and consequently the surface area) due to droplet breakup or coalescence within the digestive tract. The results of this work also highlighted the importance of subjecting the emulsions to a simulated gastric environment, since changes in pH, ionic strength, gastric enzyme activity and shear will impact the emulsion properties in the small-intestine. This manuscript has provided important insights into the effect of emulsifier charge on the behaviour of nanoemulsions during in vitro digestion, which is important to determine their functional performance, aiming at the optimization of nanoemulsion-based delivery systems to protect and release bioactive lipophilic compounds.