Browsing by Author "Procter J"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
- ItemBasic Volcanic Elements of the Arxan-Chaihe Volcanic Field, Inner Mongolia, NE China(inTech Open: Rijeka, Croatia, 2020-10-30) Li B; Nemeth K; Palmer A; Wu J; Procter J; Liu JThe Arxan-Chaihe Volcanic Field, Inner Mongolia, NE China is a Pleistocene to Recent volcanic field still considered to be active. In this chapter we provide an update of current volcanological research conducted in the last four years to describe the volcanic architecture of the identified vents, their eruptive history and potential volcanic hazards. Here we provide an evidence-based summary of the most common volcanic eruption styles and types the field experienced in its evolution. The volcanic field is strongly controlled by older structural elements of the region. Hence most of the volcanoes of the field are fissure-controlled, fissure-aligned and erupted in Hawaiian to Strombolian-style creating lava spatter and scoria cone cone chains. One of the largest and most complex volcano of the field (Tongxin) experienced a violent phreatomagmatic explosive phase creating a maar in an intra-mountain basin, while the youngest known eruptions formed a triple vent set (Yanshan) that reached violent Strombolian phases and created an extensive ash and lapilli plains in the surrounding areas. This complex vent system also emitted voluminous lava flows that change the landscape by damming fluival networks, providing a volcanological paradise for the recently established Arxan UNESCO GLobal Geopark.
- ItemCrystal entrainment from cool, low-silica rocks into hot, high-silica melts: diverse primary melt compositions at Taranaki volcano, New Zealand(The Geological Society of London, 2023-05-19) D'Mello N; Zellmer G; Kereszturi G; Ubide T; Procter J; Stewart RThe prevalence of antecrysts in arc volcanic rocks is widely accepted, yet the origin of their carrier melts remains debated. Crystal cargo in lava flows from Taranaki volcano, New Zealand, is dominated by plagioclase, clinopyroxene and amphibole. Except for some crystal rims, mineral phases are in disequilibrium with the melt they are entrained in. Major element chemistry reveals an almost complete compositional overlap between the crystals in the lava and those in xenoliths. The large volume fraction of crystals (35–55 vol%) exerts a strong control on whole-rock compositions, reducing silica by 5–11 wt% compared with the carrier melt. Yet there is no clear relationship between mineral proportion and bulk-rock compositions. Our data are inconsistent with extensive fractional crystallization, commonly invoked as a driver of magma evolution towards silica-rich compositions. Instead, high-temperature, aphyric carrier melts with varied compositions (55–68 wt% SiO2) entrain crystal cargo while ascending through colder, low-silica rocks. Thus, some parental melts at Taranaki volcano are significantly more silica-rich than arc basalts commonly invoked as primary magmas. Further, thermometric and hygrometric constraints preclude a deep crustal hot zone for the source of these melts, which we argue are of subcrustal origin.
- ItemMapping a Cloud-Free Rice Growth Stages Using the Integration of PROBA-V and Sentinel-1 and Its Temporal Correlation with Sub-District Statistics(MDPI (Basel, Switzerland), 2021-04-13) Ramadhani F; Pullanagari R; Kereszturi G; Procter J; Farooque AAMonitoring rice production is essential for securing food security against climate change threats, such as drought and flood events becoming more intense and frequent. The current practice to survey an area of rice production manually and in near real-time is expensive and involves a high workload for local statisticians. Remote sensing technology with satellite-based sensors has grown in popularity in recent decades as an alternative approach, reducing the cost and time required for spatial analysis over a wide area. However, cloud-free pixels of optical imagery are required to pro-duce accurate outputs for agriculture applications. Thus, in this study, we propose an integration of optical (PROBA-V) and radar (Sentinel-1) imagery for temporal mapping of rice growth stages, including bare land, vegetative, reproductive, and ripening stages. We have built classification models for both sensors and combined them into 12-day periodical rice growth-stage maps from January 2017 to September 2018 at the sub-district level over Java Island, the top rice production area in Indonesia. The accuracy measurement was based on the test dataset and the predicted cross-correlated with monthly local statistics. The overall accuracy of the rice growth-stage model of PROBA-V was 83.87%, and the Sentinel-1 model was 71.74% with the Support Vector Machine classifier. The temporal maps were comparable with local statistics, with an average correlation between the vegetative area (remote sensing) and harvested area (local statistics) is 0.50, and lag time 89.5 days (n = 91). This result was similar to local statistics data, which correlate planting and the harvested area at 0.61, and the lag time as 90.4 days, respectively. Moreover, the cross-correlation between the predicted rice growth stage was also consistent with rice development in the area (r > 0.52, p < 0.01). This novel method is straightforward, easy to replicate and apply to other areas, and can be scaled up to the national and regional level to be used by stakeholders to support improved agricultural policies for sustainable rice production.
- ItemProbabilistic Volcanic Hazard Assessment for National Park Infrastructure Proximal to Taranaki Volcano (New Zealand)(Frontiers Media S.A., 2022-03-28) Mead S; Procter J; Bebbington M; Rodriguez-Gomez C; Fontijn KHazard assessment for infrastructure proximal to a volcanic vent raises issues that are often not present, or not as severe in hazard assessments for more distal infrastructure. Proximal regions are subject to a greater number of hazardous phenomena, and variability in impact intensity increases with the hazard magnitude. To probabilistically quantify volcanic hazard to infrastructure, multiple volcanic hazards and their effects on exposed elements need to be considered. Compared to single-hazard assessments, multi-hazard assessments increase the size and complexity of determining hazard occurrence and magnitude, typically introducing additional uncertainties in the quantification of risk. A location-centred approach, focusing on key locations rather than key hazards, can simplify the problem to one requiring identification of hazards with the potential to affect the location, followed by assessment of the probability of these hazards and their triggering eruptions. The location-centred approach is more compatible to multi-source hazards and allows for different hazard estimation methodologies to be applied as appropriate for the infrastructure type. We present a probabilistic quantification of volcanic hazard using this location centred approach for infrastructure within Te Papakura o Taranaki National Park, New Zealand. The impact to proposed park infrastructure from volcanic activity (originating from Mt. Taranaki) is quantified using a probability chain to provide a structured approach to integrate differing hazard estimation methods with eruption probability estimates within asset lifetimes. This location-centered approach provides quantitative estimates for volcanic hazards that significantly improve volcanic hazard estimates for infrastructure proximal to the Taranaki summit vent. Volcanic mass flows, predominantly pyroclastic surges or block and ash flows, are most likely (probability >0.8) to affect walking tracks if an eruption occurs. The probability of one or more eruption(s) in the next 50 years is estimated at 0.35–0.38. This use of probability chains and a location centered assessment demonstrates a technique that can be applied to proximal hazard assessments globally.
- ItemProbabilistic volcanic mass flow hazard assessment using statistical surrogates of deterministic simulations(Elsevier Ltd., 2023-09-01) Mead SR; Procter J; Bebbington MProbabilistic volcanic hazard assessments require (1) an identification of the hazardous volcanic source; (2) estimation of the magnitude-frequency relationship for the volcanic process; (3) quantification of the dependence of hazard on magnitude and external conditions; and (4) estimation of hazard exceedance from the magnitude-frequency and hazard intensity relationship. For volcanic mass flows, quantification of the hazard is typically undertaken through the use of computationally expensive mass flow simulators. However, this computational expense restricts the number of samples that can be used to produce a probabilistic assessment and limits the ability to rapidly update hazard assessments in response to changing source probabilities. We develop an alternate approach to defining hazard intensity through a surrogate model that provides a continuous estimate of simulation outputs at negligible computational expense, demonstrated through a probabilistic hazard assessment of dome collapse (block-and-ash) flows at Taranaki volcano, New Zealand. A Gaussian Process emulator trained on a database of simulations is used as the surrogate model of hazard intensity across the input space of possible dome collapse volumes and configurations, which is then sampled using a volume-frequency relationship of dome collapse flows. The demonstrated technique is a tractable solution to the problem of probabilistic volcanic hazard assessment, with the surrogates providing a good approximation of the simulator, and is generally applicable to volcanic hazard and geo-hazard assessments that are limited by the demands of numerical simulations and changing source probabilities.
- ItemQuantifying location error to define uncertainty in volcanic mass flow hazard simulations(Copernicus Publications on behalf of the European Geosciences Union, 2021-08-20) Mead SR; Procter J; Kereszturi GThe use of mass flow simulations in volcanic hazard zonation and mapping is often limited by model complexity (i.e. uncertainty in correct values of model parameters), a lack of model uncertainty quantification, and limited approaches to incorporate this uncertainty into hazard maps. When quantified, mass flow simulation errors are typically evaluated on a pixel-pair basis, using the difference between simulated and observed ("actual") map-cell values to evaluate the performance of a model. However, these comparisons conflate location and quantification errors, neglecting possible spatial autocorrelation of evaluated errors. As a result, model performance assessments typically yield moderate accuracy values. In this paper, similarly moderate accuracy values were found in a performance assessment of three depth-averaged numerical models using the 2012 debris avalanche from the Upper Te Maari crater, Tongariro Volcano, as a benchmark. To provide a fairer assessment of performance and evaluate spatial covariance of errors, we use a fuzzy set approach to indicate the proximity of similarly valued map cells. This "fuzzification"of simulated results yields improvements in targeted performance metrics relative to a length scale parameter at the expense of decreases in opposing metrics (e.g. fewer false negatives result in more false positives) and a reduction in resolution. The use of this approach to generate hazard zones incorporating the identified uncertainty and associated trade-offs is demonstrated and indicates a potential use for informed stakeholders by reducing the complexity of uncertainty estimation and supporting decision-making from simulated data.