Browsing by Author "Mullaney J"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemIn Vitro Fermentation of Sheep and Cow Milk Using Infant Fecal Bacteria(MDPI (Basel, Switzerland), 2020-06-17) Ahlborn N; Young W; Mullaney J; Samuelsson LMWhile human milk is the optimal food for infants, formulas that contain ruminant milk can have an important role where breastfeeding is not possible. In this regard, cow milk is most commonly used. However, recent years have brought interest in other ruminant milk. While many similarities exist between ruminant milk, there are likely enough compositional differences to promote different effects in the infant. This may include effects on different bacteria in the large bowel, leading to different metabolites in the gut. In this study sheep and cow milk were digested using an in vitro infant digestive model, followed by fecal fermentation using cultures inoculated with fecal material from two infants of one month and five months of age. The effects of the cow and sheep milk on the fecal microbiota, short-chain fatty acids (SCFA), and other metabolites were investigated. Significant differences in microbial, SCFA, and metabolite composition were observed between fermentation of sheep and cow milk using fecal inoculum from a one-month-old infant, but comparatively minimal differences using fecal inoculum from a five-month-old infant. These results show that sheep milk and cow milk can have differential effects on the gut microbiota, while demonstrating the individuality of the gut microbiome.
- ItemInfant Complementary Feeding of Prebiotics for the Microbiome and Immunity(MDPI (Basel, Switzerland), 2019-02-09) McKeen S; Young W; Mullaney J; Fraser K; McNabb WC; Roy NCComplementary feeding transitions infants from a milk-based diet to solid foods, providing essential nutrients to the infant and the developing gut microbiome while influencing immune development. Some of the earliest microbial colonisers readily ferment select oligosaccharides, influencing the ongoing establishment of the microbiome. Non-digestible oligosaccharides in prebiotic-supplemented formula and human milk oligosaccharides promote commensal immune-modulating bacteria such as Bifidobacterium, which decrease in abundance during weaning. Incorporating complex, bifidogenic, non-digestible carbohydrates during the transition to solid foods may present an opportunity to feed commensal bacteria and promote balanced concentrations of beneficial short chain fatty acid concentrations and vitamins that support gut barrier maturation and immunity throughout the complementary feeding window.
- Item"Nourish to Flourish": complementary feeding for a healthy infant gut microbiome-a non-randomised pilot feasibility study.(Springer Nature Limited., 2022-05-18) Lovell AL; Eriksen H; McKeen S; Mullaney J; Young W; Fraser K; Altermann E; Gasser O; Kussmann M; Roy NC; McNabb WC; Wall CRBACKGROUND: The introduction of complementary foods and changes in milk feeding result in modifications to gastrointestinal function. The interplay between indigestible carbohydrates, host physiology, and microbiome, and immune system development are areas of intense research relevant to early and later-life health. METHODS: This 6-month prospective non-randomised feasibility study was conducted in Auckland, New Zealand (NZ), in January 2018. Forty parents/caregivers and their infants were enrolled, with 30 infants allocated to receive a prebiotic NZ kūmara (flesh and skin; a type of sweet potato) prepared as a freeze-dried powder, and ten infants allocated to receive a commercially available probiotic control known to show relevant immune benefits (109 CFU Bifidobacterium lactis BB-12®). The primary outcome was the study feasibility measures which are reported here. RESULTS: Recruitment, participant retention, and data collection met feasibility targets. Some limitations to biological sample collection were encountered, with difficulties in obtaining sufficient plasma sample volumes for the proposed immune parameter analyses. Acceptability of the kūmara powder was met with no reported adverse events. CONCLUSION: This study indicates that recruiting infants before introducing complementary foods is feasible, with acceptable adherence to the food-based intervention. These results will inform the protocol of a full-scale randomised controlled trial (RCT) with adjustments to the collection of biological samples to examine the effect of a prebiotic food on the prevalence of respiratory tract infections during infancy. Trial registration Australia New Zealand Clinical Trials Registry ACTRN12618000157279 . Prospectively registered on 02/01/2018.