Browsing by Author "Moughan PJ"
Now showing 1 - 20 of 29
Results Per Page
Sort Options
- ItemAmino acid requirements of the infant: the amino acid composition of human breast milk(Frontiers Media S.A., 2024-09-17) Moughan PJ; Deglaire A; Yan Y; Wescombe P; Lim WXJ; Stroebinger N; Duan S; Szeto IM-Y; Hodgkinson S; Freitas HRThe recommended amino acid requirements of the infant are based on the amino acid composition of mature human breast milk. The amino acid composition of breast milk is usually determined following either acid or alkaline (for tryptophan) hydrolysis. For accuracy, however, the known effect of hydrolysis time on amino acid composition should be accounted for. Also, ideally the amino acid composition of breast milk should be given in units of digested (assumed to be absorbed) amino acids. A review of the literature is presented which gives mean total amino acid concentrations in mature human milk (n = 26 studies), mean hydrolysis correction factors (n = 3 studies) and mean true ileal amino acid digestibility coefficients (n = 3 studies, suckling piglet). There were differences between the estimates of amino acid concentration corrected for hydrolysis time and digestibility, and current FAO (2013) recommendations that were not corrected for these factors. The values based on the published literature up until 2023 (mg/g true protein) corrected for hydrolysis time and digestibility gave higher values (more than 16% higher) for leucine, lysine and threonine, and considerably higher values (greater than 30%) for histidine and tryptophan. Current recommendations may need revision.
- ItemBiotransformation of Rutin in In Vitro Porcine Ileal and Colonic Fermentation Models(American Chemical Society, 2023-08-23) Ulluwishewa D; Montoya CA; Mace L; Rettedal EA; Fraser K; McNabb WC; Moughan PJ; Roy NCQuercetin, a polyphenol antioxidant, is widely distributed in food in the form of glycoside rutin, which is not readily absorbed in the gastrointestinal tract. The microbiota of the colon is known to biotransform rutin, generating quercetin aglycones that can be absorbed. We investigated the role of the ileal and colonic microbiota in rutin biotransformation using established in vitro fermentation models. Overall, a higher rate of rutin biotransformation was observed during colonic fermentation compared with ileal fermentation. The colonic microbiome showed higher potential for rutin conversion to quercetin through an increased abundance of α-rhamnosidase- and β-glucosidase-encoding genes compared to the ileal microbiome. Nonetheless, rutin metabolism occurred rapidly during ileal fermentation (∼20% rutin disappearance after 1 h). The appearance of quercetin varied depending on the ileal inoculum and correlated with an increased abundance of Firmicutes, suggesting that quercetin absorption could be improved via modulation of the ileal microbiota.
- ItemComparative bioavailability of vitamins in human foods sourced from animals and plants(Taylor and Francis Group, 2023-07-31) Chungchunlam SMS; Moughan PJVitamins are essential components of enzyme systems involved in normal growth and function. The quantitative estimation of the proportion of dietary vitamins, that is in a form available for utilization by the human body, is limited and fragmentary. This review provides the current state of knowledge on the bioavailability of thirteen vitamins and choline, to evaluate whether there are differences in vitamin bioavailability when human foods are sourced from animals or plants. The bioavailability of naturally occurring choline, vitamin D, vitamin E, and vitamin K in food awaits further studies. Animal-sourced foods are the almost exclusive natural sources of dietary vitamin B-12 (65% bioavailable) and preformed vitamin A retinol (74% bioavailable), and contain highly bioavailable biotin (89%), folate (67%), niacin (67%), pantothenic acid (80%), riboflavin (61%), thiamin (82%), and vitamin B-6 (83%). Plant-based foods are the main natural sources of vitamin C (76% bioavailable), provitamin A carotenoid β-carotene (15.6% bioavailable), riboflavin (65% bioavailable), thiamin (81% bioavailable), and vitamin K (16.5% bioavailable). The overview of studies showed that in general, vitamins in foods originating from animals are more bioavailable than vitamins in foods sourced from plants.
- ItemComparison of True Ileal Amino Acid Digestibility between Adult Humans and Growing Pigs(Oxford University Press on behalf of the American Society for Nutrition, 2022-07) Hodgkinson SM; Stroebinger N; van der Wielen N; Mensink M; Montoya C; Hendriks WH; de Vries S; Stein HH; Moughan PJBACKGROUND: It is not feasible to determine the true ileal amino acid (AA) digestibility of protein sources in humans on a routine basis, and the growing pig has been recommended as an animal model for this purpose but requires further validation. OBJECTIVES: To determine and compare true ileal AA digestibility between adult human ileostomates and growing cannulated pigs for a range of food proteins. METHODS: Seven protein sources (black beans, bread, collagen, pigeon peas, wheat bran, whey protein isolate, and zein) that spanned the range of digestibilities typically seen in foods were evaluated. Six female growing pigs received each of the protein sources, as well as a protein-free diet, and digesta were collected via ileal T-cannula. Adult human ileostomates consumed the same protein sources (5-8 ileostomates, depending on the protein source), as well as a protein-free diet, and digesta were collected. Titanium dioxide and celite were included in the diets as indigestible markers. True ileal AA digestibility coefficients were determined. RESULTS: There was a significant effect of protein source (P ≤ 0.001) for all AAs. The effect of species was not significant (P > 0.05) except for total lysine (but not for available lysine). When analyzed within diets, the statistically significant species effect for true lysine digestibility was found for black beans only. Pig and human digestibility values were generally highly and significantly (P ≤ 0.05) correlated. A linear regression equation derived for true ileal AA digestibility (given as coefficients) determined in the human and pig for the overall mean of all AAs was (y = human, x = pig) y = 1.00x - 0.010, with the slope not statistically significant (P > 0.05) from unity and the intercept not different (P > 0.05) from zero. CONCLUSIONS: True ileal AA digestibility values determined in the growing pig can be directly used for predicting digestibility in adult humans.
- ItemConsideration of the role of protein quality in determining dietary protein recommendations(Frontiers Media S.A., 2024-11-13) Wolfe RR; Church DD; Ferrando AA; Moughan PJ; Grootswagers PThe quality of a dietary protein refers to its ability to provide the EAAs necessary to meet dietary requirements. There are 9 dietary amino acids that cannot be metabolically produced in the body and therefore must be consumed as part of the diet to avoid adverse metabolic consequences. These essential amino acids (EAAs) serve a variety of roles in the body. The amount and profile of the dietary EAAs relative to the individual EAA requirements and the digestibility of the dietary protein are the key factors that determine its quality. Currently the Digestible Indispensable Amino Acid Score (DIAAS) is the best available approach to quantifying protein quality. The most prominent metabolic role of dietary EAAs is to stimulate protein synthesis by serving as signals to activate molecular mechanisms responsible for the initiation of protein synthesis and, most importantly, to provide the necessary precursors for the synthesis of complete proteins. Current dietary recommendations generally do not consider protein quality. Accounting for protein quality in dietary patterns can be accomplished while staying within established ranges for dietary protein consumption. Poor protein quality can be compensated for to some extent by eating more low-quality protein, but to be effective (“complementary”) the limiting EAA must differ between the low-quality protein and the base diet to which it is being supplemented. Adding a high-quality protein to a dietary pattern based on low-quality protein is more effective in meeting EAA goals than increasing the amount of low-quality protein, even if the low-quality proteins are complementary. Further, reliance entirely on low-quality protein food sources, particularly in circumstances that may benefit from a level of dietary EAAs greater than minimal requirements, is likely to include excessive caloric consumption. While protein consumption in high-income nations is generally perceived to be adequate or even excessive, assessment of dietary patterns indicates that a significant percentage of individuals may fall short of meeting optimal levels of EAA consumption, especially in circumstances such as aging in which the optimal EAA consumption is greater than basal values for healthy young individuals. The case is made that protein quality is an important consideration in meeting EAA requirements.
- ItemDiet affordability: a key dimension in the assessment of sustainable food systems and healthy diets(Frontiers Media S.A., 2024-08-12) Chungchunlam SMS; Moughan PJ; Raubenheimer DA promulgated global shift toward a plant-based diet is largely in response to a perceived negative environmental impact of animal food production, but the nutritional adequacy and economic implications of plant-sourced sustainable healthy dietary patterns need to be considered. This paper reviews recent modeling studies using Linear Programming to determine the respective roles of animal- and plant-sourced foods in developing a least-cost diet in the United States and New Zealand. In both economies, least-cost diets were found to include animal-based foods, such as milk, eggs, fish, and seafood, to meet the energy and nutrient requirements of healthy adults at the lowest retail cost. To model a solely plant-based least-cost diet, the prevailing costs of all animal-sourced foods had to be increased by 1.1 to 11.5 times their original retail prices. This led to the inclusion of fortified plant-based foods, such as fortified soymilk, and a plant-based diet that was considerably (34–45%) more costly. The first-limiting essential nutrients were mostly the vitamins and minerals, with special focus on pantothenic acid, zinc, and vitamin B-12, when transitioning from an animal- and plant-containing least-cost diet to a plant-only based least-cost diet. Modeled least-cost diets based on contemporary food costs include animal-sourced foods, at least for developed high-income US and NZ food economies, and potentially for developing low- and middle-income countries, such as Indonesia. Modeling of least-cost diets that consist exclusively of plant-based foods is feasible, but at a higher daily diet cost, and these diets are often close to limiting for several key nutrients. Diet affordability, as a key dimension of sustainable healthy diets, and the respective economic roles of animal- and plant-sourced foods need to be considered.
- ItemDifferences in small intestinal apparent amino acid digestibility of raw bovine, caprine, and ovine milk are explained by gastric amino acid retention in piglets as an infant model(Frontiers Media S.A., 2023-09-04) Ahlborn NG; Montoya CA; Roy D; Roy NC; Stroebinger N; Ye A; Samuelsson LM; Moughan PJ; McNabb WC; Gallier SBACKGROUND: The rate of stomach emptying of milk from different ruminant species differs, suggesting that the small intestinal digestibility of nutrients could also differ across these milk types. OBJECTIVE: To determine the small intestinal amino acid (AA) digestibility of raw bovine, caprine, and ovine milk in the piglet as an animal model for the infant. METHODS: Seven-day-old piglets (n = 12) consumed either bovine, caprine, or ovine milk diets for 15 days (n = 4 piglets/milk). On day 15, fasted piglets received a single meal of fresh raw milk normalized for protein content and containing the indigestible marker titanium dioxide. Entire gastrointestinal tract contents were collected at 210 min postprandially. Apparent AA digestibility (disappearance) in different regions of the small intestine was determined. RESULTS: On average, 35% of the dietary AAs were apparently taken up in the small intestine during the first 210 min post-feeding, with 67% of the AA digestibility occurring in the first quarter (p ≤ 0.05) and 33% in the subsequent two quarters. Overall, except for isoleucine, valine, phenylalanine, and tyrosine, the small intestinal apparent digestibility of all AAs at 210 min postprandially in piglets fed ovine milk was, on average, 29% higher (p ≤ 0.05) than for those fed bovine milk. Except for lysine, there was no difference in the apparent digestibility (p > 0.05) of any AAs between piglets fed caprine milk or ovine milk. The apparent digestibility of alanine was higher (p ≤ 0.05) in piglets fed caprine milk than those fed bovine milk. When apparent digestibility was corrected for gastric AA retention, only small differences in the small intestinal apparent digestibility of AAs were observed across milk types. CONCLUSION: Bovine, caprine and ovine milk had different apparent small intestinal AA digestibility at 210 min postprandially. When corrected for gastric AA retention, the differences in apparent digestibility across species largely disappeared. The apparent AA digestibility differed across small intestinal locations.
- ItemDigestible indispensable amino acid score (DIAAS): 10 years on(Frontiers Media S.A., 2024-07-03) Moughan PJ; Lim WXJ; Berry EThe objective of the review is to revisit the findings of the 2011 Food and Agriculture Organization of the United Nations (FAO) Expert Consultation on Dietary Protein Quality Evaluation in Human Nutrition, and to report on progress on uptake of the findings. It is evident that since 2011 there has been a concerted research effort to enhance an understanding of the protein quality of foods. The validity of the growing pig ileal protein digestibility assay has been confirmed and numerous studies reported using the growing pig as a model to give true ileal amino acid digestibility values for foods as consumed by humans. This has allowed for the determination of digestible indispensable amino acid scores (DIAAS) for a range of foods. A new non-invasive true ileal amino acid digestibility assay in humans which can be applied in different physiological states, called the dual-isotope assay, has been developed and applied to determine the DIAAS values of foods. It is concluded that DIAAS is currently the most accurate score for routinely assessing the protein quality rating of single source proteins. In the future, the accuracy of DIAAS can be enhanced by improved information on: the ideal dietary amino acid balance including the ideal dispensable to indispensable amino acid ratio; dietary indispensable amino acid requirements; effects of processing on ileal amino acid digestibility and lysine bioavailability. There is a need to develop rapid, inexpensive in vitro digestibility assays. Conceptual issues relating DIAAS to food regulatory claims, and to holistic indices of food nutritional and health status are discussed. The first recommendation of the 2011 Consultation regarding treating each indispensable amino acid as an individual nutrient has received little attention. Consideration should be given to providing food label information on the digestible contents of specific indispensable amino acids.
- ItemEditorial: Dietary protein for human health.(Frontiers Media S.A., 2025-01-15) Moughan PJ; Hendriks WH; Hodgkinson SM; Chungchunlam SMS; Lim WXJ; Mensink M; Stroebinger N; van der Wielen N; Pivovarova-Ramich O
- ItemEffects of Different Protein Sources on Amino Acid Absorption and Plasma Appearance of Tryptophan, Large Neutral Amino Acids, and Tryptophan Metabolites in Pigs(Elsevier Inc on behalf of American Society for Nutrition, 2024-07-15) Giezenaar C; Montoya CA; Kreutz K; Hodgkinson S; Roy NC; Mace LJ; Fraser K; Fernstrom JD; McNabb WC; Moughan PJBACKGROUND: Absorption of tryptophan (TRP) across the gut epithelium is potentially modulated by competing large neutral amino acids (LNAAs), which could affect the appearance of TRP and its metabolites in the bloodstream. OBJECTIVES: This study aimed to determine, in a growing pig model of an adult human, the absorption of TRP and other LNAAs from the gastrointestinal tract, and plasma appearance of TRP, LNAAs, and TRP metabolites, in response to dietary proteins varying in TRP content. METHODS: Pigs were adapted for 7 d to each of 4 diets that differed in their protein source and TRP content: 1) alpha-lactalbumin (AL; 9.95 mg TRP/g diet DM), 2) whey protein (6.59 mg TRP/g), 3) casein (3.73 mg TRP/g), or 4) zein (0.14 mg TRP/g). On day 8, pigs were euthanised after a 12-h fast (baseline), or 1, 2, 3, 4, or 6 h after they received a test meal consisting of 45 g protein, or a protein-free meal (n = 6 pigs at each time in each meal group). Tryptophan and LNAA absorption from the small intestine, and appearance of TRP, LNAAs, and TRP metabolites (melatonin, serotonin, kynurenine pathway metabolites), in the portal vein and systemic circulation, were determined. RESULTS: AL intake resulted in sustained elevated plasma TRP concentrations after an overnight fast. The amount of TRP absorbed was dose-dependently related to protein TRP content (P = 0.028), with fastest rates for pigs fed AL (371 mg/h). Portal and systemic plasma TRP, TRP/LNAA, and the TRP metabolites were highest (P ≤ 0.05) after AL intake, and remained above baseline levels for ∼4 h postprandially. Absorption rates of TRP correlated with postprandial plasma TRP and TRP metabolites (P ≤ 0.05). CONCLUSIONS: In adult humans, postprandial plasma TRP and TRP metabolite concentrations can likely be modulated by the TRP content of the meal.
- ItemGut luminal endogenous protein: Implications for the determination of ileal amino acid digestibility in humans(Cambridge University Press, 2012) Moughan PJ; Rutherfurd SThe true ileal digestibility assay provides the most informative measure of digestibility to assess bioavailability of amino acids in foods for humans. To determine ‘true’ estimates of ileal amino acid digestibility, requires that endogenous amino acids present in digesta at the terminal ileum be quantified. The amounts of endogenous amino acids in ileal digesta can be determined after feeding an animal or human a protein-free diet (traditional approach) or by various methods after giving a protein-containing diet. When the protein-free method has been applied with adult human subjects an overall mean value (three separate studies) for endogenous ileal nitrogen flow of 800 mg N/d has been reported. This value is considerably lower than a comparable value obtained after feeding protein of 1852 mg N/d (mean of four separate studies), and thus endogenous ileal N and amino acids should be measured under conditions of protein alimentation. There is some confusion concerning the terminology used to define digestibility, with the term “true” digestibility having different adopted meanings. Here, true amino acid digestibility is defined as apparent amino acid digestibility corrected for the basal amino acid losses determined after giving either a protein-free or a protein-containing diet. Basal losses should be determined at a defined dry-matter and protein intake. The protein-free diet approach to determining endogenous amino acids is considered unphysiological and basal losses refer to ileal endogenous amino acid flows associated with digesta dry-matter flow, and not including “specific” effects of dietary factors such as non starch polysaccharides and anti nutritional factors. Arguments are advanced that the enzyme hydrolysed protein/ultra filtration method may be suitable for routine application with a cannulated pig model, to obtain physiologically-valid basal estimates of ileal endogenous amino acids to allow calculation of true ileal amino acid digestibility in the pig, and then prediction (via statistical relationships) of true coefficients of amino acid digestibility in humans.
- ItemHuman milk vs. Infant formula digestive fate: In vitro dynamic digestion and in vivo mini-piglet models lead to similar conclusions(Elsevier Ltd, 2024-11-01) Charton E; Menard O; Cochet M-F; Le Gouar Y; Jardin J; Henry G; Ossemond J; Bellanger A; Montoya CA; Moughan PJ; Dupont D; Le Huërou-Luron I; Deglaire AInfant formula (IF), the only nutritionally adequate substitute for human milk (HM), still needs to be improved to be more biomimetic with HM, including in terms of digestive fate. The latter can be explored using different digestion models. The present study aimed to compare IF and HM digestion using in vivo (mini-piglet) and in vitro (dynamic system, DIDGI®) models. Fresh mature HM was collected and compared with a standard bovine IF. In vivo, 18 Yucatan mini-piglets (24-day-old) received HM or IF and were euthanized 30 min after the last meal. The entire digestive content was collected from the stomach to the colon. In vitro, the same meals were fed to an in vitro dynamic digestion model simulating the term infant at four weeks of age. Digesta were sampled regularly in the gastric and intestinal compartments. Structure (confocal microscopy and laser light scattering) and proteolysis (SDS-PAGE for residual intact proteins, OPA for hydrolysis degree, LC-MS/MS for peptides) were investigated along digestion. The digesta microstructure differed between HM and IF in a similar way between in vitro and in vivo digestion. In vitro gastric proteolysis of caseins and α-lactalbumin was significantly slower for HM than for IF, such as for the early intestinal proteolysis degree. In vitro bioaccessibility of free AAs explained only 30 % of the true ileal digestibility of AAs. Peptide mapping of caseins differed between HM and IF along their digestion. The relative peptide mapping data over six proteins from HM and IF were highly correlated between in vitro and in vivo digestion, particularly at 80 and 120 min of in vitro gastric digestion vs. in vivo stomach data and at 20 and 40 min of in vitro intestinal digestion vs. in vivo proximal jejunum data (r = 0.7–0.9, p < 0.0001, n = 1604). 40 to 50 % of the bioactive peptides identified in vivo were also found in vitro, with a good correlation of their abundances (r = 0.5, p < 0.0001, n = 61). Overall, in vitro and in vivo digestion were in good agreement, both indicating a different digestive fate for HM and IF.
- ItemIleal Digestibility of Nitrogen and Amino Acids in Human Milk and an Infant Formula as Determined in Neonatal Minipiglets(Elsevier Inc. on behalf of American Society for Nutrition, 2023-04) Charton E; Henry G; Cahu A; Le Gouar Y; Dahirel P; Moughan PJ; Montoya CA; Bellanger A; Dupont D; Le Huërou-Luron I; Deglaire ABACKGROUND: Infant formula (IF) has to provide at least the same amount of amino acids (AAs) as human milk (HM). AA digestibility in HM and IF was not studied extensively, with no data available for tryptophan digestibility. OBJECTIVES: The present study aimed to measure the true ileal digestibility (TID) of total nitrogen and AAs in HM and IF to estimate AA bioavailability using Yucatan mini-piglets as an infant model. METHODS: Twenty-four 19-day-old piglets (males and females) received either HM or IF for 6 days or a protein-free diet for 3 days, with cobalt-EDTA as an indigestible marker. Diets were fed hourly over 6 h before euthanasia and digesta collection. Total N, AA, and marker contents in diets and digesta were measured to determine the TID. Unidimensional statistical analyses were conducted. RESULTS: Dietary N content was not different between HM and IF, while true protein was lower in HM (-4 g/L) due to a 7-fold higher non-protein N content in HM. The TID of total N was lower (P < 0.001) for HM (91.3 ± 1.24%) than for IF (98.0 ± 0.810%), while the TID of amino acid nitrogen (AAN) was not different (average of 97.4 ± 0.655%, P = 0.272). HM and IF had similar (P > 0.05) TID for most of the AAs including tryptophan (96.7 ± 0.950%, P = 0.079), except for some AAs (lysine, phenylalanine, threonine, valine, alanine, proline, and serine), with small significant difference (P < 0.05). The first limiting AA was the aromatic AAs, and the digestible indispensable AA score (DIAAS) was higher for HM (DIAASHM = 101) than for IF (DIAASIF = 83). CONCLUSION: HM, compared to IF, had a lower TID for total N only, whereas the TID of AAN and most AAs, including Trp, was high and similar. A larger proportion of non-protein N is transferred to the microbiota with HM, which is of physiological relevance, although this fraction is poorly considered for IF manufacturing.
- ItemImmune+™. Immunoglobulin for health and vigour(2012-08-01) Balan P; Moughan PJ; Rutherfurd SM
- ItemIn vitro digestibility of dietary proteins and in vitro DIAAS analytical workflow based on the INFOGEST static protocol and its validation with in vivo data(Elsevier Ltd, 2023-03-15) Sousa R; Recio I; Heimo D; Dubois S; Moughan PJ; Hodgkinson SM; Portmann R; Egger LThe FAO recommends the digestible indispensable amino acid score (DIAAS) to determine protein quality in foods, preferably tested in vivo. Here, the INFOGESTin vitrodigestion protocol was applied and supplemented with an analytical workflow allowing the assessment of protein digestibility and DIAAS calculation. The protocol was applied to selected samples WPI, zein, collagen, black beans, pigeon peas, All-Bran®, and peanuts. The total protein digestibility, digestibility of individual amino acids (AA), and DIAAS values were established and compared with in vivo data for the same substrates. Total protein digestibility (total Nitrogen, r = 0.7, P < 0.05; primary amines (OPA), r = 0.6, P < 0.02; total AA, r = 0.6, P < 0.02) and digestibility of individual AA (r = 0.6, P < 0.0001) were in good agreement, between in vitro and in vivo, with a mean difference of 1.2 %. In vitro DIAAS was highly correlated with DIAAS obtained from in vivo true ileal digestibility values (r = 0.96, R2 = 0.89, P < 0.0001) with a mean difference of 0.1 %.
- ItemIn Vitro Ileal Fermentation is Affected More by the Fiber Source Fermented than the Ileal Microbial Composition in Growing Pigs(Elsevier Inc. on behalf of American Society for Nutrition, 2023-05) Hoogeveen AM; Moughan PJ; Hodgkinson SM; Stroebinger N; Yu W; Rettedal EA; McNabb WC; Montoya CABACKGROUND: The fermentation of undigested material in the ileum is quantitatively important. However, the respective contributions of the microbial composition and the substrate to ileal fermentation are unclear. OBJECTIVE: This aim was to investigate the contribution of microbial composition and fiber source to in vitro ileal fermentation outcomes. METHODS: Thirteen ileal cannulated female pigs (Landrace/Large White; 9-wk-old; 30.5 kg body weight) were given diets containing black beans, wheat bread, chickpeas, peanuts, pigeon peas, sorghum, or wheat bran as the sole protein source for 7 d (100 g protein/kg dry matter diet). On day 7, ileal digesta were collected and stored at -80°C for microbial analysis and in vitro fermentation. For each diet, a pooled ileal inoculum was prepared to ferment different fiber sources (cellulose, pectin, arabinogalactan, inulin, fructooligosaccharides, and resistant starch) for 2 h at 37°C. Organic matter fermentability and organic acid production were determined following in vitro fermentation. Data were analyzed using a 2-way ANOVA (inoculum × fiber). RESULTS: Forty-five percent of the identified genera in the digesta differed across diets. For instance, the number of Lactococcus was 115-fold greater (P ≤ 0.05) in the digesta of pigs fed the pigeon pea diet than for pigs fed the wheat bran diet. For both in vitro organic matter fermentability and organic acid production, there were significant (P ≤ 0.05) interactions between the inoculum and the fiber source. For instance, pectin and resistant starch resulted in 1.6- to 31-fold more (P ≤ 0.05) lactic acid production when fermented by the pigeon pea inoculum than other inocula. For specific fiber sources, statistically significant correlations were found between the number of bacteria from certain members of the ileal microbial community and fermentation outcomes. CONCLUSIONS: Both the fiber source fermented and the ileal microbial composition of the growing pig affected in vitro fermentation; however, the effect of the fiber source was predominant.Curr Dev Nutr 2023;x:xx.
- ItemInfant nutrition affects the microbiota-gut-brain axis: Comparison of human milk vs. infant formula feeding in the piglet model(MDPI (Basel, Switzerland ), 2022-09-21) Charton E; Bourgeois A; Bellanger A; Le-Gouar Y; Dahirel P; Romé V; Randuineau G; Cahu A; Moughan PJ; Montoya CA; Blat S; Dupont D; Deglaire A; Le Huërou-Luron I; Benítez-Páez AEarly nutrition plays a dominant role in infant development and health. It is now understood that the infant diet impacts the gut microbiota and its relationship with gut function and brain development. However, its impact on the microbiota-gut-brain axis has not been studied in an integrative way. The objective here was to evaluate the effects of human milk (HM) or cow’s milk based infant formula (IF) on the relationships between gut microbiota and the collective host intestinal-brain axis. Eighteen 10-day-old Yucatan mini-piglets were fed with HM or IF. Intestinal and fecal microbiota composition, intestinal phenotypic parameters, and the expression of genes involved in several gut and brain functions were determined. Unidimensional analyses were performed, followed by multifactorial analyses to evaluate the relationships among all the variables across the microbiota-gut-brain axis. Compared to IF, HM decreased the α-diversity of colonic and fecal microbiota and modified their composition. Piglets fed HM had a significantly higher ileal and colonic paracellular permeability assessed by ex vivo analysis, a lower expression of genes encoding tight junction proteins, and a higher expression of genes encoding pro-inflammatory and anti-inflammatory immune activity. In addition, the expression of genes involved in endocrine function, tryptophan metabolism and nutrient transport was modified mostly in the colon. These diet-induced intestinal modifications were associated with changes in the brain tissue expression of genes encoding the blood-brain barrier, endocrine function and short chain fatty acid receptors, mostly in hypothalamic and striatal areas. The integrative approach underlined specific groups of bacteria (Veillonellaceae, Enterobacteriaceae, Lachnospiraceae, Rikenellaceae, and Prevotellaceae) associated with changes in the gut-brain axis. There is a clear influence of the infant diet, even over a short dietary intervention period, on establishment of the microbiota-gut-brain axis.
- ItemKiwifruit fibre level influences the predicted production and absorption of SCFA in the hindgut of growing pigs using a combined in vivo-in vitro digestion methodology(Cambridge University Press, 19/05/2015) Montoya CA; Rutherfurd S; Moughan PJCombined in vivo (ileal cannulated pig) and in vitro (faecal inoculum-based fermentation) digestion methodologies were used to predict the production and absorption of SCFA in the hindgut of growing pigs. Ileal and faecal samples were collected from animals (n 7) fed diets containing either 25 or 50 g/kg DM of kiwifruit fibre from added kiwifruit for 14 d. Ileal and faecal SCFA concentrations normalised for food DM intake (DMI) and nutrient digestibility were determined. Ileal digesta were collected and fermented for 38 h using a fresh pig faecal inoculum to predict SCFA production. The predicted hindgut SCFA production along with the determined ileal and faecal SCFA were then used to predict SCFA absorption in the hindgut and total tract organic matter digestibility. The determined ileal and faecal SCFA concentrations (e.g. 8·5 and 4·4 mmol/kg DMI, respectively, for acetic acid for the low-fibre diet) represented only 0·2-3·2 % of the predicted hindgut SCFA production (e.g. 270 mmol/kg DMI for acetic acid). Predicted production and absorption of acetic, butyric and propionic acids were the highest for the high-fibre diet (P0·05). In conclusion, determined ileal and faecal SCFA concentrations represent only a small fraction of total SCFA production, and may therefore be misleading in relation to the effect of diets on SCFA production and absorption. Considerable quantities of SCFA are produced and absorbed in the hindgut of the pig by the fermentation of kiwifruit.
- ItemPresence of Unabsorbed Free Amino Acids at the End of the Small Intestine Indicates the Potential for an Increase in Amino Acid Uptake in Humans and Pigs(Elsevier Inc on behalf of American Society for Nutrition, 2023-03) van der Wielen N; de Vries S; Gerrits WJ; Lammers-Jannink K; Moughan PJ; Mensink M; Hendriks WBACKGROUND: Unabsorbed free amino acids (AAs) at the end of the small intestine result in a potential preventable nutritional loss. OBJECTIVES: This study aimed to quantify free AAs in terminal ileal digesta of both humans and pigs to investigate its relevance for the nutritional value of food proteins. METHODS: Two studies with three diets were performed: a human study-ileal digesta from eight adult ileostomates were collected over 9 h after ingestion of a single meal unsupplemented or supplemented with 30 g zein or whey; pig study-12 cannulated pigs were fed for 7 d with a diet containing whey or zein or no-protein diet, and ileal digesta were collected on the last 2 d. Digesta were analyzed for total and 13 free AAs. True ileal digestibility (TID) of AAs was compared with and without free AAs. RESULTS: All terminal ileal digesta samples contained free AAs. The TID of AAs in whey was 97% ± 2.4% (mean ± SD) in human ileostomates and 97% ± 1.9% in growing pigs. If the analyzed free AAs would have been absorbed, TID of whey would increase by 0.4%-units in humans and 0.1%-units in pigs. The TID of AAs in zein was 70% ± 16.4% in humans and 77% ± 20.6% in pigs and would increase by 2.3%-units and 3.5%-units, respectively, if the analyzed free AAs would have been fully absorbed. The largest difference was observed for threonine from zein: if free threonine was absorbed, the TID would increase by 6.6%-units in both species (P < 0.05). CONCLUSIONS: Free AAs are present at the end of the small intestine and can potentially have a nutritionally relevant effect for poorly digestible protein sources, whereas the effect is negligible for highly digestible protein sources. This result provides insight into the room for improvement of a protein's nutritional value if all free AAs are to be absorbed. J Nutr 2023;xx:xx-xx. This trial was registered at clinicaltrials.gov as NCT04207372.
- ItemSignificance of Postprandial Insulin and Triglycerides to Evaluate the Metabolic Response of Composite Meals Differing in Nutrient Composition - A Randomized Cross-Over Trial.(Frontiers Media S.A., 2022-03-02) Thota RN; Moughan PJ; Singh H; Garg ML; Fetissov SOBACKGROUND AND AIMS: GlucoTRIG, based on postprandial plasma insulin and triglyceride concentrations, has been recently developed as a novel index to determine the postprandial metabolic response to the meals. This study aimed to test GlucoTRIG as a measure for ranking composite meals for their metabolic effects. METHODS: In a randomized cross-over trial, healthy adult volunteers (both males and females; n = 10 for each meal) consumed three is caloric (2000 kj) test meals (meal 1, meal 2, meal 3) of varying macronutrient composition. Postmeal consumption, venous blood samples were collected to determine plasma insulin and plasma triglycerides for estimating the GlucoTRIG value using (Triglycerides180min × Insulin180min) - (Triglycerides0min × Insulin0min). RESULTS: The GlucoTRIG values differed significantly (p = 0.0085) across meals. The statistical significance remains even after adjusting for confounding variables such as baseline diet, insulin, and triglycerides. The meal (M3) with a high fiber, low total fat content and containing less refined foods (fruits, beans, vegetables, plain yogurt) exhibited a significantly (p = 0.007) lower GlucoTRIG value (10 ± 7.7) compared to the other two meals, M1 (77 ± 19.8) and M2 (38 ± 12.1) which contained low processed foods, and were relatively high in fat and low in fiber meals. No statistically significant differences were observed between M1 and M2 meal. CONCLUSIONS: GlucoTRIG is a physiologically based index that may be useful to rank composite meals for reducing the risk of metabolic diseases. Further research focusing on the application of GlucoTRIG to foods, meals, and diets is warranted. ACTRN12619000973112 (Australian New Zealand Clinical Trials Registry, ANZCTR).