Browsing by Author "Gui X"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- ItemEnergy Efficient UAV-Enabled Mobile Edge Computing for IoT Devices: A Review(IEEE, 2021-09-21) Abrar M; Ajmal U; Almohaimeed ZM; Gui X; Akram R; Masroor R; Pan CWith the emergence of computation-intensive and delay-sensitive applications, such as face recognition, virtual reality, augmented reality, and Internet of Things (IoT) devices; Mobile Edge Computing (MEC) allows the IoT devices to offload their heavy computation tasks to nearby edge cloud network rather than to compute the tasks locally. Therefore, it helps to reduce the energy consumption and execution delay in the ground mobile users. Flying Unmanned Aerial Vehicles (UAVs) integrated with the MEC server play a key role in 5G and future wireless communication networks to provide spatial coverage and further computational services to the small, battery-powered and energy-constrained devices. The UAV-enabled MEC (U-MEC) system has flexible mobility and more computational capability compared to the terrestrial MEC network. They support line-of-sight (LoS) links with the users offloading their tasks to the UAVs. Hence, users can transmit more data without interference by mitigating small-scale fading and shadowing effects. UAVs resources and flight time are very limited due to size, weight, and power (SWaP) constraints. Therefore, energy-aware communication and computation resources are allocated in order to minimize energy consumption.In this paper, a brief survey on U-MEC networks is presented. It includes the brief introduction regarding UAVs and MEC technology. The basic terminologies and architectures used in U-MEC networks are also defined. Moreover, mobile edge computation offloading working, different access schemes used during computation offloading technique are explained. Resources that are needed to be optimized in U-MEC systems are depicted with different optimization problem, and solution types. Furthermore, to guide future work in this area of research, future research directions are outlined. At the end, challenges and open issues in this domain are also summarized.
- ItemInter-Cell Interference in Relay Networks(2016-06) Abrar M; Gui X; Punchihewa A
- ItemInvestigation of Energy Cost of Data Compression Algorithms in WSN for IoT Applications(MDPI (Basel, Switzerland), 2022-10-10) Mishra M; Sen Gupta G; Gui X; García ÓThe exponential growth in remote sensing, coupled with advancements in integrated circuits (IC) design and fabrication technology for communication, has prompted the progress of Wireless Sensor Networks (WSN). WSN comprises of sensor nodes and hubs fit for detecting, processing, and communicating remotely. Sensor nodes have limited resources such as memory, energy and computation capabilities restricting their ability to process large volume of data that is generated. Compressing the data before transmission will help alleviate the problem. Many data compression methods have been proposed but mainly for image processing and a vast majority of them are not pertinent on sensor nodes because of memory impediment, energy utilization and handling speed. To overcome this issue, authors in this research have chosen Run Length Encoding (RLE) and Adaptive Huffman Encoding (AHE) data compression techniques as they can be executed on sensor nodes. Both RLE and AHE are capable of balancing compression ratio and energy utilization. In this paper, a hybrid method comprising RLE and AHE, named as H-RLEAHE, is proposed and further investigated for sensor nodes. In order to verify the efficacy of the data compression algorithms, simulations were run, and the results compared with the compression techniques employing RLE, AHE, H-RLEAHE, and without the use of any compression approach for five distinct scenarios. The results demonstrate the RLE's efficiency, as it surpasses alternative data compression methods in terms of energy efficiency, network speed, packet delivery rate, and residual energy throughout all iterations.
- ItemNetwork Lifetime Improvement through Energy-Efficient Hybrid Routing Protocol for IoT Applications(MDPI (Basel, Switzerland), 2021-11-09) Mishra M; Gupta GS; Gui X; Takefuji Y; Mukhopadhyay S; Vezzetti EThe application of the Internet of Things (IoT) in wireless sensor networks (WSNs) poses serious challenges in preserving network longevity since the IoT necessitates a considerable amount of energy usage for sensing, processing, and data communication. As a result, there are several conventional algorithms that aim to enhance the performance of WSN networks by incorporating various optimization strategies. These algorithms primarily focus on the network layer by developing routing protocols to perform reliable communication in an energy-efficient manner, thus leading to an enhanced network life. For increasing the network lifetime in WSNs, clustering has been widely accepted as an important method that groups sensor nodes (SNs) into clusters. Additionally, numerous researchers have been focusing on devising various methods to increase the network lifetime. The prime factor that helps to maximize the network lifetime is the minimization of energy consumption. The authors of this paper propose a multi-objective optimization approach. It selects the optimal route for transmitting packets from source to sink or the base station (BS). The proposed model employs a two-step approach. The first step employs a trust model to select the cluster heads (CHs) that manage the data communication between the BS and nodes in the cluster. Further, a novel hybrid algorithm, combining a particle swarm optimization (PSO) algorithm and a genetic algorithm (GA), is proposed to determine the routes for data transmission. To validate the efficacy of the proposed hybrid algorithm, named PSOGA, simulations were conducted and the results were compared with the existing LEACH method and PSO, with a random route selection for five different cases. The obtained results establish the efficiency of the proposed approach, as it outperforms existing methods with increased energy efficiency, increased network throughput, high packet delivery rate, and high residual energy throughout the entire iterations.
- ItemNovel adaptive transmission protocol for mobile sensors that improves energy efficiency and removes the limitation of state based adaptive power control protocol (SAPC)(MDPI AG, 15/03/2017) Basu D; Sen Gupta G; Moretti G; Gui XIn this paper, we have presented a novel transmission protocol which is suited for battery-powered sensors that are worn by a patient when under medical treatment, and allow constant monitoring of health indices. These body-wearable sensors log data from the patient and transmit the data to a base-station or gateway, via a wireless link at specific intervals. The signal link quality varies because the distance between the patient and the gateway is not fixed. This may lead to packet drops that increase the energy consumption due to repeated retransmission. The proposed novel transmission power control protocol combines a state based adaptive power control (SAPC) algorithm and an intelligent adaptive drop-off algorithm, to track the changes in the link quality, in order to maintain an acceptable Packet success rate (PSR)(~99%). This removes the limitation of the SAPC by making the drop-off rate adaptive. Simulations were conducted to emulate a subject’s movement in different physical scenarios—an indoor office environment and an outdoor running track. The simulation results were validated through experiments in which the transmitter, together with the sensor mounted on the subject, and the subject themselves were made to move freely within the communicable range. Results showed that the proposed protocol performs at par with the best performing SAPC corresponding to a fixed drop-off rate value.