Investigation of Energy Cost of Data Compression Algorithms in WSN for IoT Applications

Loading...
Thumbnail Image
Date
2022-10-10
Open Access Location
Journal Title
Journal ISSN
Volume Title
Publisher
MDPI (Basel, Switzerland)
Rights
(c) 2022 The Author/s
CC BY
Abstract
The exponential growth in remote sensing, coupled with advancements in integrated circuits (IC) design and fabrication technology for communication, has prompted the progress of Wireless Sensor Networks (WSN). WSN comprises of sensor nodes and hubs fit for detecting, processing, and communicating remotely. Sensor nodes have limited resources such as memory, energy and computation capabilities restricting their ability to process large volume of data that is generated. Compressing the data before transmission will help alleviate the problem. Many data compression methods have been proposed but mainly for image processing and a vast majority of them are not pertinent on sensor nodes because of memory impediment, energy utilization and handling speed. To overcome this issue, authors in this research have chosen Run Length Encoding (RLE) and Adaptive Huffman Encoding (AHE) data compression techniques as they can be executed on sensor nodes. Both RLE and AHE are capable of balancing compression ratio and energy utilization. In this paper, a hybrid method comprising RLE and AHE, named as H-RLEAHE, is proposed and further investigated for sensor nodes. In order to verify the efficacy of the data compression algorithms, simulations were run, and the results compared with the compression techniques employing RLE, AHE, H-RLEAHE, and without the use of any compression approach for five distinct scenarios. The results demonstrate the RLE's efficiency, as it surpasses alternative data compression methods in terms of energy efficiency, network speed, packet delivery rate, and residual energy throughout all iterations.
Description
Keywords
H-RLEAHE, IoT, RLE, adaptive huffman encoding, data compression
Citation
Mishra M, Sen Gupta G, Gui X. (2022). Investigation of Energy Cost of Data Compression Algorithms in WSN for IoT Applications.. Sensors (Basel). 22. 19. (pp. 7685-).
Collections