Browsing by Author "Gielen G"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemCo-selection of Heavy Metal and Antibiotic Resistance in Soil Bacteria from Agricultural Soils in New Zealand(MDPI (Basel, Switzerland), 2022-02-04) Heydari A; Kim ND; Horswell J; Gielen G; Siggins A; Taylor M; Bromhead C; Palmer BRAccumulation of trace elements (including heavy metals) in soil from usage of superphos-phate fertilisers induces resistance of soil bacteria to trace elements of environmental concern (TE-oEC) and may co‐select for resistance to antibiotics (Ab). This study aimed to investigate selection of co‐resistance of soil bacteria to Cd, Zn and Hg, and Ab in soils with varied management histories. Genetic diversity of these bacteria and horizontal transfer of Cd resistance genes (cadA and czcA) were also investigated. Soils with either pastoral and arable management histories and either high levels of Cd and Zn, or indigenous bush with background levels of these TEoEC from the Waikato region, New Zealand were sampled. Plate culturing with a range of TEoEC and Ab concentrations, Pollution Induced Community Tolerance (PICT) assay, antibiotic sensitivity, terminal restriction fragment length polymorphism (TRFLP) and horizontal gene transfer (HGT) analyses were em-ployed to investigate co‐selection of TEoEC and Ab resistance. Higher levels of bacterial resistance to TEoEC and Ab correlated with higher levels of TEoEC in soil. Bacterial community structures were altered in soils with high TEoEC levels. Cd resistance genes were transferred from donor bacterial isolates, to recipients and the transconjugants also had resistance to Zn and/or Hg and a range of Ab.
- ItemEnvironmental drivers of antimicrobial resistance – cadmium contamination & antibiotic resistance in soil samples from a rural airstrip.(2023-12-05) Heydari A; Kim N; Biggs P; Horswell J; Gielen G; Siggins A; Bromhead C; Palmer BEnvironmental contamination with both inorganic and organic compounds is a growing problem globally. In this study we investigated links between heavy metal contamination of soil and selection for antibiotic resistance in soil bacteria. Soil samples taken at 10 m intervals along the length of a 70 m transect of a rural airstrip used for aerial topdressing located in Belmont Regional Park near Wellington were analysed for heavy metal content and resistance profiles of heterotrophic bacteria cultured were characterised. A gradient of cadmium contamination (a known contaminant of superphosphate fertiliser) ranging from 1.14 to 7.20 mg kg-1 of dry soil was detected in the samples. Total bacterial counts were significantly reduced at the most heavily contaminated subsites, with >60% of isolates resistant to 0.01 mM CdCl2. The ratio of antibiotic resistant isolates to total CFU was significantly higher at the most contaminated compared to the least contaminated subsite for five common antibiotics. Metagenomic analysis of total DNA from three subsites showed significantly different profiles at all taxonomic levels. This suggests environmental contamination with heavy metals may be a significant and under-appreciated driver of selection for antimicrobial resistance.