Co-selection of Heavy Metal and Antibiotic Resistance in Soil Bacteria from Agricultural Soils in New Zealand
Loading...
Date
2022-02-04
Open Access Location
Journal Title
Journal ISSN
Volume Title
Publisher
MDPI (Basel, Switzerland)
Rights
CC BY
Abstract
Accumulation of trace elements (including heavy metals) in soil from usage of superphos-phate fertilisers induces resistance of soil bacteria to trace elements of environmental concern (TE-oEC) and may co‐select for resistance to antibiotics (Ab). This study aimed to investigate selection of co‐resistance of soil bacteria to Cd, Zn and Hg, and Ab in soils with varied management histories. Genetic diversity of these bacteria and horizontal transfer of Cd resistance genes (cadA and czcA) were also investigated. Soils with either pastoral and arable management histories and either high levels of Cd and Zn, or indigenous bush with background levels of these TEoEC from the Waikato region, New Zealand were sampled. Plate culturing with a range of TEoEC and Ab concentrations, Pollution Induced Community Tolerance (PICT) assay, antibiotic sensitivity, terminal restriction fragment length polymorphism (TRFLP) and horizontal gene transfer (HGT) analyses were em-ployed to investigate co‐selection of TEoEC and Ab resistance. Higher levels of bacterial resistance to TEoEC and Ab correlated with higher levels of TEoEC in soil. Bacterial community structures were altered in soils with high TEoEC levels. Cd resistance genes were transferred from donor bacterial isolates, to recipients and the transconjugants also had resistance to Zn and/or Hg and a range of Ab.
Description
(c) The Author/s
Keywords
trace elements, heavy metal resistance, antibiotic resistance, bacteria, soil, co-selection, PICT, TRFLP, horizontal gene transfer
Citation
SUSTAINABILITY, 2022, 14 (3)