Browsing by Author "Dunowska M"
Now showing 1 - 13 of 13
Results Per Page
Sort Options
- ItemAcknowledgements upon Conclusion of the Pathogens Special Issue "Epidemiology, Surveillance and Control of Infectious Diseases".(MDPI (Basel, Switzerland), 2023-02-08) Heuer C; Dunowska MOne Health is a popular headline for an all-inclusive concept of our scientific work. It is not a new concept, but one along that we have been researching for many decades, if not centuries. Nevertheless, the term has become a keyword used worldwide for an inclusive approach to investigating issues such as pathogens in our various environments and host species. It was with this intention that Pathogens initiated this Special Issue. Epidemiology is a field that combines specialist knowledge of many disciplines, considered a facilitator of communication and various diverse skills.
- ItemBovine viral diarrhoea viruses from New Zealand belong predominantly to the BVDV-1a genotype.(Taylor and Francis Group, 2024-03-01) Dunowska M; Lal R; Dissanayake SD; Bond SD; Burrows E; Moffat J; Howe LAIM: To determine which genotypes of bovine viral diarrhoea virus (BVDV) circulate among cattle in New Zealand. METHODS: Samples comprised BVDV-1-positive sera sourced from submissions to veterinary diagnostic laboratories in 2019 (n = 25), 2020 (n = 59) and 2022 (n = 74) from both beef and dairy herds, as well as archival BVDV-1 isolates (n = 5). Fragments of the 5' untranslated region (5' UTR) and glycoprotein E2 coding sequence of the BVDV genome were amplified and sequenced. The sequences were aligned to each other and to international BVDV-1 sequences to determine their similarities and phylogenetic relationships. The 5' UTR sequences were also used to create genetic haplotype networks to determine if they were correlated with selected traits (location, type of farm, and year of collection). RESULTS: The 5' UTR sequences from New Zealand BVDV were closely related to each other, with pairwise identities between 89% and 100%. All clustered together and were designated as BVDV-1a (n = 144) or BVDV-1c (n = 5). There was no evidence of a correlation between the 5' UTR sequence and the geographical origin within the country, year of collection or the type of farm. Partial E2 sequences from New Zealand BVDV (n = 76) showed 74-100% identity to each other and clustered in two main groups. The subtype assignment based on the E2 sequence was the same as based on the 5' UTR analysis. This is the first comprehensive analysis of genomic variability of contemporary New Zealand BVDV based on the analysis of the non-coding (5' UTR) and coding (E2) sequences. CONCLUSIONS AND CLINICAL RELEVANCE: Knowledge of the diversity of the viruses circulating in the country is a prerequisite for the development of effective control strategies, including a selection of suitable vaccines. The data presented suggest that New Zealand BVDV are relatively homogeneous, which should facilitate eradication efforts including selection or development of the most suitable vaccines.
- ItemCross-species transmission of coronaviruses with a focus on severe acute respiratory syndrome coronavirus 2 infection in animals: a review for the veterinary practitioner.(Taylor and Francis Group, 2023-07-01) Dunowska MIn 2019 a novel coronavirus termed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged from an unidentified source and spread rapidly among humans worldwide. While many human infections are mild, some result in severe clinical disease that in a small proportion of infected people is fatal. The pandemic spread of SARS-CoV-2 has been facilitated by efficient human-to-human transmission of the virus, with no data to indicate that animals contributed to this global health crisis. However, a range of domesticated and wild animals are also susceptible to SARS-CoV-2 infection under both experimental and natural conditions. Humans are presumed to be the source of most animal infections thus far, although natural transmission between mink and between free-ranging deer has occurred, and occasional natural transmission between cats cannot be fully excluded. Considering the ongoing circulation of the virus among people, together with its capacity to evolve through mutation and recombination, the risk of the emergence of animal-adapted variants is not negligible. If such variants remain infectious to humans, this could lead to the establishment of an animal reservoir for the virus, which would complicate control efforts. As such, minimising human-to-animal transmission of SARS-CoV-2 should be considered as part of infection control efforts. The aim of this review is to summarise what is currently known about the species specificity of animal coronaviruses, with an emphasis on SARS-CoV-2, in the broader context of factors that facilitate cross-species transmission of viruses.
- ItemGenetic Variation in the Glycoprotein B Sequence of Equid Herpesvirus 5 among Horses of Various Breeds at Polish National Studs.(MDPI (Basel, Switzerland), 2021-03-09) Stasiak K; Dunowska M; Trewick S; Rola J; Bodem JEquid herpesvirus 5 (EHV-5) is one of two γ-herpesviruses that commonly infect horses worldwide. The objective of the study was to estimate the genetic variability within EHV-5 viruses circulating among horses in Poland. Partial glycoprotein B (gB) sequences from 92 Polish horses from 13 studs throughout Poland were compared to each other and to three EHV-5 sequences from other countries. Despite the overall high level of conservation, considerable variability was observed around the putative furin cleavage site. Based on phylogenetic analysis, the viruses clustered within two major lineages (A and B), with further sub-clustering within group A. The clustering of EHV-5 sequences was independent of age or geographical origin of the sampled horses. Recombination was identified as one of the factors contributing to the genomic heterogeneity. Viruses from unweaned foals were more similar to viruses from other foals at the same stud than to viruses form their dams, suggesting the horizontal transfer and/or evolution of EHV-5 within individual hosts. Our data indicate that the gB sequence is not suitable for tracking the source of EHV-5 infection. Further research is needed to elucidate the importance of the sequence variability around the EHV-5 gB furin cleavage site on the biology of the virus.
- ItemGenomic analysis of canine pneumoviruses and canine respiratory coronavirus from New Zealand.(Taylor and Francis Group, 2024-07-01) Dunowska M; More GD; Biggs PJ; Cave NJAIMS: To isolate canine respiratory coronavirus (CRCoV) and canine pneumovirus (CnPnV) in cell culture and to compare partial genomic sequences of CRCoV and CnPnV from New Zealand with those from other countries. METHODS: Oropharyngeal swab samples from dogs affected by canine infectious respiratory disease syndrome that were positive for CnPnV (n = 15) or CRCoV (n = 1) by virus-specific reverse transcriptase quantitative PCR (RT-qPCR) in a previous study comprised the starting material. Virus isolation was performed in HRT-18 cells for CRCoV and RAW 264.7 and Vero cells for CnPnV. The entire sequence of CnPnV G protein (1,266 nucleotides) and most (8,063/9,707 nucleotides) of the 3' region of CRCoV that codes for 10 structural and accessory proteins were amplified and sequenced. The sequences were analysed and compared with other sequences available in GenBank using standard molecular tools including phylogenetic analysis. RESULTS: Virus isolation was unsuccessful for both CRCoV and CnPnV. Pneumovirus G protein was amplified from 3/15 (20%) samples that were positive for CnPnV RNA by RT-qPCR. Two of these (NZ-048 and NZ-049) were 100% identical to each other, and 90.9% identical to the third one (NZ-007). Based on phylogenetic analysis of the G protein gene, CnPnV NZ-048 and NZ-049 clustered with sequences from the USA, Thailand and Italy in group A, and CnPnV NZ-007 clustered with sequences from the USA in group B. The characteristics of the predicted genes (length, position) and their putative protein products (size, predicted structure, presence of N- and O-glycosylation sites) of the New Zealand CRCoV sequence were consistent with those reported previously, except for the region located between open reading frame (ORF)3 (coding for S protein) and ORF6 (coding for E protein). The New Zealand virus was predicted to encode 5.9 kDa, 27 kDa and 12.7 kDa proteins, which differed from the putative coding capacity of this region reported for CRCoV from other countries. CONCLUSIONS: This report represents the first characterisation of partial genomic sequences of CRCoV and CnPnV from New Zealand. Our results suggest that the population of CnPnV circulating in New Zealand is not homogeneous, and that the viruses from two clades described overseas are also present here. Limited conclusions can be made based on only one CRCoV sequence, but the putative differences in the coding capacity of New Zealand CRCoV support the previously reported variability of this region. The reasons for such variability and its biological implications need to be further elucidated.
- ItemGenomic Variability of Canine Parvoviruses from a Selected Population of Dogs and Cats in Sri Lanka(MDPI (Basel, Switzerland), 2021-08-29) Jinadasa R; Ghosh S; Hills S; Premalal T; Atapattu U; Fuward M; Kalupahana W; Dunowska M; Gunn-Moore D; Aguiar DMDThe aim of the study was to identify canine parvovirus type 2 (CPV-2) subtypes circulating among a selected population of domestic dogs and cats in Sri Lanka and to investigate the evolutionary patterns among Sri Lankan viruses in the context of contemporary global CPV-2 sequences. Altogether, 40/61 (65.6%) samples tested were positive for CPV-2 DNA, including 31/48 (64.6%) dogs and 9/13 (69%) cats. All three subtypes (CPV-2a, CPV-2b and CPV-2c) were detected, with CPV-2a being most common. International median joining haplotype network of 291 CPV-2 sequences suggested that there was little barrier for CPV-2 moving between different geographical regions worldwide, including Sri Lanka, and that there was no correlation between the genetic structure within the molecular network and the decade of sample collection. By contrast, there was correlation between CPV-2 subtype and genetic structure, both within the international network and within the network built from 31 Sri Lankan CPV-2 sequences only. The structure within the latter was not correlated with the location of the veterinary clinic where the samples were submitted, the age or species of the host. Altogether, we have shown that there is considerable variability of CPV-2 genotypes circulating in Sri Lanka, which is likely driven by both local evolution and introduction from other countries. The similarity of CPV-2 obtained from cats and dogs suggests that cats may play a role in the epidemiology of CPV-2 in Sri Lanka.
- ItemICTV Virus Taxonomy Profile: Arteriviridae 2021(Microbiology Society, 2021-08-06) Brinton MA; Gulyaeva AA; Balasuriya UBR; Dunowska M; Faaberg KS; Goldberg T; Leung FCC; Nauwynck HJ; Snijder EJ; Stadejek T; Gorbalenya AEThe family Arteriviridae comprises enveloped RNA viruses with a linear, positive-sense genome of approximately 12.7 to 15.7 kb. The spherical, pleomorphic virions have a median diameter of 50-74 nm and include eight to eleven viral proteins. Arteriviruses infect non-human mammals in a vector-independent manner. Infections are often persistent and can either be asymptomatic or produce overt disease. Some arteriviruses are important veterinary pathogens while others infect particular species of wild rodents or African non-human primates. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Arteriviridae, which is available at ictv.global/report/arteriviridae.
- ItemIdentification of a novel polyomavirus from a marsupial host(Oxford University Press, 2022-10-06) Dunowska M; Perrott M; Biggs PWe report the identification and analysis of a full sequence of a novel polyomavirus from a brushtail possum (Trichosurus vulpecula) termed possum polyomavirus (PPyV). The sequence was obtained from the next-generation sequencing assembly during an investigation into the aetiological agent for a neurological disease of possums termed wobbly possum disease (WPD), but the virus was not aetiologically involved in WPD. The PPyV genome was 5,224 nt long with the organisation typical for polyomaviruses, including early (large and small T antigens) and late (Viral Protein 1 (VP1), VP2, and VP3) coding regions separated by the non-coding control region of 465 nt. PPyV clustered with betapolyomaviruses in the WUKI clade but showed less than 60 per cent identity to any of the members of this clade. We propose that PPyV is classified within a new species in the genus Betapolyomavirus. These data add to our limited knowledge of marsupial viruses and their evolution.
- ItemKinetics of the Equid Herpesvirus 2 and 5 Infections among Mares and Foals from Three Polish National Studs(MDPI (Basel, Switzerland), 2022-04) Stasiak K; Dunowska M; Rola J; Paillot R; Freed EOEquid herpesvirus 2 (EHV-2) and 5 (EHV-5) are two γ-herpesviruses that are commonly detected from horses worldwide, based on several cross-sectional molecular surveys. Comparatively few studies examined the dynamics of γ-herpesvirus infection over time in a group of horses. The aim of the current study was to investigate the dynamics of EHV-2/5 infections among mares and their foals at three Polish national studs with different breeds of horses: Arabians, Thoroughbreds and Polish Konik horses. Nasal swabs were collected from each of 38 mare-foal pairs monthly for a period of 6 to 8 months. Virus-specific quantitative PCR assays were used to determine the viral load of EHV-2 and EHV-5 in each sample. All 76 horses sampled were positive for EHV-2 or EHV-5 on at least one sampling occasion. The majority (73/76, 96%) were infected with both EHV-2 and EHV-5. In general, the mean load of viral DNA was higher in samples from foals than from mares, but similar for EHV-2 and EHV-5 at most sampling occasions. There was, however, a considerable variability in the viral DNA load between samples collected at different times from the same foal, as well as between samples from different foals. The latter was more apparent for EHV-2 than for EHV-5. All foals became infected with both viruses early in life, before weaning, and remained positive on all, or most, subsequent samplings. The virus shedding by mares was more intermittent, indicating the existence of age-related differences. Overall, the data presented extend our knowledge of EHV-2/5 epidemiology among mares and foals.
- ItemPrevalence and Sequence Analysis of Equine Rhinitis Viruses among Horses in Poland.(MDPI (Basel, Switzerland), 2024-07-26) Stasiak K; Dunowska M; Rola J; Troyer REquine rhinitis A (ERAV) and B (ERBV) viruses are respiratory pathogens with worldwide distribution. The current study aimed to determine the frequency of infection of ERAV and ERBV among horses and foals at Polish national studs, and to determine genetic variability within the viruses obtained. Virus-specific quantitative RT-PCR assays targeting a 5' untranslated region were used to screen nasal swabs collected from 621 horses at 16 national horse studs from throughout Poland, including 553 healthy horses and 68 horses with respiratory disease. A partial DNA polymerase gene was amplified and sequenced from the qRT-PCR-positive samples. The obtained sequences were analysed using phylogeny and genetic network analysis. None of the nasal swabs were positive for ERAV, whereas ERBV was found in 11/621 (1.78%) samples collected from 10 healthy horses and one foal affected by respiratory disease. Partial DNA polymerase gene sequence variability was correlated with individual horses and studs from which samples were collected when only Polish sequences were analysed, but there was no correlation between country of origin and ERBV sequence when Polish and international sequences were included in the network. The report presents the first detection of ERBV in Poland.
- ItemValidation of an Indirect Immunofluorescence Assay and Commercial Q Fever Enzyme-Linked Immunosorbent Assay for Use in Macropods(American Society for Microbiology, 2022-07) Tolpinrud A; Stenos J; Chaber A-L; Devlin JM; Herbert C; Pas A; Dunowska M; Stevenson MA; Firestone SM; Barrs, VRKangaroos are considered to be an important reservoir of Q fever in Australia, although there is limited knowledge on the true prevalence and distribution of coxiellosis in Australian macropod populations. Serological tests serve as useful surveillance tools, but formal test validation is needed to be able to estimate true seroprevalence rates, and few tests have been validated to screen wildlife species for Q fever. In this study, we modified and optimized a phase-specific indirect immunofluorescence assay (IFA) for the detection of IgG antibodies against Coxiella burnetii in macropod sera. The assay was validated against the commercially available ID Screen Q fever indirect multispecies enzyme-linked immunosorbent assay (ELISA) kit (IDVet, Grabels, France) to estimate the diagnostic sensitivity and specificity of each assay, using Bayesian latent class analysis. A direct comparison of the two tests was performed by testing 303 serum samples from 10 macropod populations from the east coast of Australia and New Zealand. The analysis indicated that the IFA had relatively high diagnostic sensitivity (97.6% [95% credible interval [CrI], 88.0 to 99.9]) and diagnostic specificity (98.5% [95% CrI, 94.4 to 99.9]). In comparison, the ELISA had relatively poor diagnostic sensitivity (42.1% [95% CrI, 33.7 to 50.8]) and similar diagnostic specificity (99.2% [95% CrI, 96.4 to 100]) using the cutoff values recommended by the manufacturer. The estimated true seroprevalence of C. burnetii exposure in the macropod populations included in this study ranged from 0% in New Zealand and Victoria, Australia, up to 94.2% in one population from New South Wales, Australia.
- ItemVirucidal Efficacy of Blue LED and Far-UVC Light Disinfection against Feline Infectious Peritonitis Virus as a Model for SARS-CoV-2(MDPI (Basel, Switzerland), 2021-08) Gardner A; Ghosh S; Dunowska M; Brightwell G; Tannock G; Kim HTransmission of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) occurs through respiratory droplets passed directly from person to person or indirectly through fomites, such as common use surfaces or objects. The aim of this study was to determine the virucidal efficacy of blue LED (405 nm) and far-UVC (222 nm) light in comparison to standard UVC (254 nm) irradiation for the inactivation of feline infectious peritonitis virus (FIPV) on different matrices as a model for SARS-CoV-2. Wet or dried FIPV on stainless steel, plastic, or paper discs, in the presence or absence of artificial saliva, were exposed to various wavelengths of light for different time periods (1-90 min). Dual activity of blue LED and far-UVC lights were virucidal for most wet and dried FIPV within 4 to 16 min on all matrices. Individual action of blue LED and far-UVC lights were virucidal for wet FIPV but required longer irradiation times (8-90 min) to reach a 4-log reduction. In comparison, LED (265 nm) and germicidal UVC (254 nm) were virucidal on almost all matrices for both wet and dried FIPV within 1 min exposure. UVC was more effective for the disinfection of surfaces as compared to blue LED and far-UVC individually or together. However, dual action of blue LED and far-UVC was virucidal. This combination of lights could be used as a safer alternative to traditional UVC.
- ItemWildlife nidoviruses: biology, epidemiology, and disease associations of selected nidoviruses of mammals and reptiles.(American Society for Microbiology, 2023-08-01) Flies AS; Flies EJ; Fountain-Jones NM; Musgrove RE; Hamede RK; Philips A; Perrott MRF; Dunowska M; Prasad VR; Stenglein MDWildlife is the source of many emerging infectious diseases. Several viruses from the order Nidovirales have recently emerged in wildlife, sometimes with severe consequences for endangered species. The order Nidovirales is currently classified into eight suborders, three of which contain viruses of vertebrates. Vertebrate coronaviruses (suborder Cornidovirineae) have been extensively studied, yet the other major suborders have received less attention. The aim of this minireview was to summarize the key findings from the published literature on nidoviruses of vertebrate wildlife from two suborders: Arnidovirineae and Tornidovirineae. These viruses were identified either during investigations of disease outbreaks or through molecular surveys of wildlife viromes, and include pathogens of reptiles and mammals. The available data on key biological features, disease associations, and pathology are presented, in addition to data on the frequency of infections among various host populations, and putative routes of transmission. While nidoviruses discussed here appear to have a restricted in vivo host range, little is known about their natural life cycle. Observational field-based studies outside of the mortality events are needed to facilitate an understanding of the virus-host-environment interactions that lead to the outbreaks. Laboratory-based studies are needed to understand the pathogenesis of diseases caused by novel nidoviruses and their evolutionary histories. Barriers preventing research progress include limited funding and the unavailability of virus- and host-specific reagents. To reduce mortalities in wildlife and further population declines, proactive development of expertise, technologies, and networks should be developed. These steps would enable effective management of future outbreaks and support wildlife conservation.