Browsing by Author "Chen Q"
Now showing 1 - 18 of 18
Results Per Page
Sort Options
- ItemAge Differences in Ileum Microbiota Density: VFAs and Their Transport-Related Gene Interactions in Tibetan Sheep(MDPI (Basel, Switzerland), 2024-10-03) Wang F; Sha Y; He Y; Liu X; Chen X; Yang W; Chen Q; Gao M; Huang W; Wang J; Hao Z; Wang L; Yang FMicrobiota density plays an important role in maintaining host metabolism, immune function, and health, and age has a specific effect on the composition of intestinal microbiota. Therefore, the age-specific effects of age differences on the structure and function of the ileum microbiota in Tibetan sheep were investigated by determining the density of the ileum microbiota, the content of VFAs, and the expression levels of their transporter-related genes at different ages. The results showed that the contents of acetic acid and propionic acid in the ileum of Tibetan sheep in the 1.5-year-old group were significantly higher (p < 0.05) than those in other age groups, and that the contents of total VFAs were also significantly higher (p < 0.05) than those in other age groups. The relative densities of ileum Rf, Ra, and Fs were significantly higher in the 1.5-year-old group than in the other age groups (p < 0.05). The ileum epithelial VFAs transport-related genes AE2, MCT-4, and NHE1 had the highest expression in the 1.5-year-old group, and the expression of DRA was significantly lower in the 1.5-year-old group than in the 6-year-old group (p < 0.05). Correlation analysis showed that Cb, Sr, and Tb were significantly positively correlated with butyric acid concentration (p < 0.05) and negatively correlated with acetic acid, but the difference was not significant (p > 0.05); MCT-1, MCT-4, and AE2 were significantly positively correlated (p < 0.05) with acetic, propionic, and isobutyric acid concentrations; NHE1, NHE2, and MCT-4 were highly significantly positively correlated (p < 0.01) with Romboutsia and unclassified_Peptostreptococcaceae, while acetic acid was significantly positively correlated (p < 0.05) with NK4A214_group; Romboutsia, and unclassified_Peptostreptococcaceae were significantly positively correlated (p < 0.05). Therefore, compared with other ages, the 1.5-year-old Tibetan sheep had a stronger fermentation and metabolic capacity in the ileum under traditional grazing conditions on the plateau, which could provide more energy for Tibetan sheep during plateau acclimatization.
- ItemAn accumulated mutation gained in mosquito cells enhances Zika virus virulence and fitness in mice.(American Society for Microbiology, 2024-10-16) Fan X-X; Li R-T; Zhu Y-B; Chen Q; Li X-F; Cao T-S; Zhao H; Cheng G; Qin C-F; Heise MTZika virus (ZIKV) remains a significant public health threat worldwide. A number of adaptive mutations have accumulated within the genome of ZIKV during global transmission, some of which have been linked to specific phenotypes. ZIKV maintains an alternating cycle of replication between mosquitoes and vertebrate hosts, but the role of mosquito-specific adaptive mutations in ZIKV has not been well investigated. In this study, we demonstrated that serial passaging of ZIKV in mosquito Aag2 cells led to the emergence of critical amino acid substitutions, including A94V in the prM protein and V153D and H401Y in the E protein. Further characterization via reverse genetics revealed that the H401Y substitution in the E protein did not augment viral replication in mosquitoes but significantly enhanced neurovirulence and lethality compared with those of the wild-type (WT) virus in mice. More importantly, the H401Y mutant maintained its virulence phenotype in mice after propagation in mosquitoes in mosquito-mouse cycle model. In particular, recombinant ZIKV harboring the H401Y substitution showed enhanced competitive fitness over WT ZIKV in various mammalian cells and mouse brains, but not in mosquito cells. Notably, the H401Y substitution in the ZIKV E protein has been detected in recent isolates derived from both mosquitoes and humans in Asia and the Americas. In summary, our findings not only identify a novel virulence determinant of ZIKV but also highlight the complexity of the relationship between the evolution of vector-borne viruses and their clinical outcome in nature.
- ItemAntagonistic systemin receptors integrate the activation and attenuation of systemic wound signaling in tomato.(Elsevier B.V., 2024-12-03) Zhou K; Wu F; Deng L; Xiao Y; Yang W; Zhao J; Wang Q; Chang Z; Zhai H; Sun C; Han H; Du M; Chen Q; Yan J; Xin P; Chu J; Han Z; Chai J; Howe GA; Li C-B; Li CPattern recognition receptor (PRR)-mediated perception of damage-associated molecular patterns (DAMPs) triggers the first line of inducible defenses in both plants and animals. Compared with animals, plants are sessile and regularly encounter physical damage by biotic and abiotic factors. A longstanding problem concerns how plants achieve a balance between wound defense response and normal growth, avoiding overcommitment to catastrophic defense. Here, we report that two antagonistic systemin receptors, SYR1 and SYR2, of the wound peptide hormone systemin in tomato act in a ligand-concentration-dependent manner to regulate immune homeostasis. Whereas SYR1 acts as a high-affinity receptor to initiate systemin signaling, SYR2 functions as a low-affinity receptor to attenuate systemin signaling. The expression of systemin and SYR2, but not SYR1, is upregulated upon SYR1 activation. Our findings provide a mechanistic explanation for how plants appropriately respond to tissue damage based on PRR-mediated perception of DAMP concentrations and have implications for uncoupling defense-growth trade-offs.
- ItemAssessment of clinical feasibility:offline adaptive radiotherapy for lung cancer utilizing kV iCBCT and UNet++ based deep learning model.(Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine, 2024-11-29) Zeng H; Chen Q; E X; Feng Y; Lv M; Zeng S; Shen W; Guan W; Zhang Y; Zhao R; Wang S; Yu JBackground Lung cancer poses a significant global health challenge. Adaptive radiotherapy (ART) addresses uncertainties due to lung tumor dynamics. We aimed to investigate a comprehensively and systematically validated offline ART regimen with high clinical feasibility for lung cancer. Methods This study enrolled 102 lung cancer patients, who underwent kV iterative cone-beam computed tomography (iCBCT). Data collection included iCBCT and planning CT (pCT) scans. Among these, data from 70 patients were employed for training the UNet++ based deep learning model, while 15 patients were allocated for testing the model. The model transformed iCBCT into adaptive CT (aCT). Clinical radiotherapy feasibility was verified in 17 patients. The dosimetric evaluation encompassed GTV, organs at risk (OARs), and monitor units (MU), while delivery accuracy was validated using ArcCHECK and thermoluminescent dosimeter (TLD) detectors. Results The UNet++ based deep learning model substantially improved image quality, reducing mean absolute error (MAE) by 70.05%, increasing peak signal-to-noise ratio (PSNR) by 17.97%, structural similarity (SSIM) by 7.41%, and the Hounsfield Units (HU) of aCT approaching a closer proximity to pCT compared to kV iCBCT. There were no significant differences observed in the dosimetric parameters of GTV and OARs between the aCT and pCT plans, confirming the accuracy of the dose maps in ART plans. Similarly, MU manifested no notable disparities, underscoring the consistency in treatment efficiency. Gamma passing rates for intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) plans derived from aCT and pCT exceeded 98%, while the deviations in TLD measurements (within 2% to 7%) also exhibited no significant differences, thus corroborating the precision of dose delivery. Conclusion An offline ART regimen utilizing kV iCBCT and UNet++ based deep learning model is clinically feasible for lung cancer treatment. This approach provides enhanced image quality, comparable treatment plans to pCT, and precise dose delivery.
- ItemEconomic burden of patients with leading cancers in China: a cost-of-illness study.(BioMed Central Ltd, 2024-09-27) Wu Z; Yu Y; Xie F; Chen Q; Cao Z; Chen S; Liu GGBACKGROUND: China accounts for 24% of newly diagnosed cancer cases and 30% of cancer-related deaths worldwide. Comprehensive analyses of the economic burden on patients across different cancer treatment phases, based on empirical data, are lacking. This study aims to estimate the financial burden borne by patients and analyze the cost compositions of the leading cancers with the highest number of new cases in China. METHODS: This cross-sectional cost-of-illness study analyzed patients diagnosed with lung, breast, colorectal, esophageal, liver, or gastric cancer, identified through electronic health records (EHRs) from 84 hospitals across 17 provinces in China. Patients completed any one of the initial treatment phase, follow-up phase, and relapse/metastasis phase were recruited by trained attending physicians through a stratified sampling procedure to ensure enough cases for each cancer progression stage and cancer treatment phase. Direct and indirect costs by treatment phase were collected from the EHRs and self-reported surveys. We estimated per case cost for each type of cancer, and employed subgroup analyses and multiple linear regression models to explore cost drivers. RESULTS: We recruited a total of 13,745 cancer patients across three treatment phases. The relapse/metastasis phase incurred the highest per case costs, varying from $8,890 to $14,572, while the follow-up phase was the least costly, ranging from $1,840 to $4,431. Being in the relapse/metastasis phase and having an advanced clinical stage of cancer at diagnosis were associated with significantly higher cost, while patients with low socioeconomic status borne lower costs. CONCLUSIONS: There were substantial financial burden on patients with six leading cancers in China. Health policymakers should emphasize comprehensive healthcare coverage for marginalized populations such as the uninsured, less educated, and those living in underdeveloped regions.
- ItemEnhanced removal of arsenic and cadmium from contaminated soils using a soluble humic substance coupled with chemical reductant.(1/03/2023) Wei J; Tu C; Xia F; Yang L; Chen Q; Chen Y; Deng S; Yuan G; Wang H; Jeyakumar P; Bhatnagar ASoil washing is an efficient, economical, and green remediation technology for removing several heavy metal (loid)s from contaminated industrial sites. The extraction of green and efficient washing agents from low-cost feedback is crucially important. In this study, a soluble humic substance (HS) extracted from leonardite was first tested to wash soils (red soil, fluvo-aquic soil, and black soil) heavily contaminated with arsenic (As) and cadmium (Cd). A D-optimal mixture design was investigated to optimize the washing parameters. The optimum removal efficiencies of As and Cd by single HS washing were found to be 52.58%-60.20% and 58.52%-86.69%, respectively. Furthermore, a two-step sequential washing with chemical reductant NH2OH•HCl coupled with HS (NH2OH•HCl + HS) was performed to improve the removal efficiency of As and Cd. The two-step sequential washing significantly enhanced the removal of As and Cd to 75.25%-81.53% and 64.53%-97.64%, which makes the residual As and Cd in soil below the risk control standards for construction land. The two-step sequential washing also effectively controlled the mobility and bioavailability of residual As and Cd. However, the activities of soil catalase and urease significantly decreased after the NH2OH•HCl + HS washing. Follow-up measures such as soil neutralization could be applied to relieve and restore the soil enzyme activity. In general, the two-step sequential soil washing with NH2OH•HCl + HS is a fast and efficient method for simultaneously removing high content of As and Cd from contaminated soils.
- ItemHigh-temperature and transcritical heat pump cycles and advancements: A review(Elsevier Ltd, 2022-10) Adamson K-M; Walmsley TG; Carson JK; Chen Q; Schlosser F; Kong L; Cleland DJIndustrial and large-scale heat pumps are a well-established, clean and low-emission technology for processing temperatures below 100 °C, especially when powered by renewable energy. The next frontier in heat pumping is to extend the economic operating envelope to supply the 100–200 °C range, where an estimated 27% of industrial process heat demand is required. Most high-temperature heat pump cycles operate at pressures below the refrigerant's critical point. However, high-temperature transcritical heat pump (HTTHP) technology has - due to the temperature glide – a significant efficiency potential, especially for processes with large temperature changes on the sink side. This review examines how further developments in HTTHP technology can leverage innovations from high-temperature heat pump research to respond to key technical challenges. To this end, a comprehensive list of 49 different high temperature or transcritical heat pump cycle structures was compiled, which lead to classification of 10 performance-enhancing cycle components. Focusing specifically on high-temperature transcritical heat pump cycles, this review establishes six technical challenges facing their development and proposes solutions for each challenge, including a new transcritical-transcritical cascade cycle innovation. A key outcome of the review is the proposal of a new cycle that requires detailed investigation as a candidate for a high-temperature transcritical heat pump cycle.
- ItemInvestigation on in-situ deoxygenation performance of bio-oil model compound guaiacol over Ce-Fe/Al2O3 catalyst(Elsevier B V on behalf of Shandong University, 2023-06-15) Yang M; Chen Y; Wang Y; Yang L; Cui W; Liu Y; Wang C; Chen QThe investigation of the low-cost deoxygenation of guaiacol (GUA, a model bio-oil compound) is of importance for upgrading bio-oil. At present, common sulfide catalysts for GUA deoxygenation reactions cause contamination of the liquid product, and noble metal catalysts are economically disadvantageous. In this study, four reduced Fe-based oxides with different Ce doping ratios were prepared and their effects on the in-situ deoxygenation performance of GUA in aqueous/methanol hydrogen donor solvents were explored. The results based on the deoxygenation degree, conversion degree, and higher heating value (HHV) of the products showed that the oxide catalyst with a Fe/Ce molar ratio of 2:1 in the methanol solvent performed very well. After selecting an excellent catalyst and a better hydrogen donor solvent, four factors (reaction temperature, reaction time, volume ratio of GUA dosage and methanol dosage, and the ratio of catalyst dosage at the bottom of the reactor to that at the top) in the deoxygenation degree of GUA were investigated using an orthogonal experimental method to further explore the performance of the catalyst. The results showed that the reaction temperature and time greatly influenced GUA deoxygenation. Under optimal experimental conditions, the deoxygenation degree and conversion degree of GUA could reach 34.36% and 92.56%, respectively, based on the relative peak area of gas chromatography–mass spectrometry, and the HHV of the liquid product was 32.27 MJ/kg. Although Fe/Ce catalysts mainly promote demethoxylation, demethylation, and methylation, the stability and quality of the liquid products were improved compared with GUA owing to the reduction in phenolic hydroxyl and ether content. The reduced catalyst in the process of GUA in-situ deoxygenation reactions in methanol maintained a steady performance, as revealed by X-ray diffraction and X-ray fluorescence.
- ItemMercury records from natural archives reveal ecosystem responses to changing atmospheric deposition.(Oxford University Press, 2024-11-19) Chen Q; Wu Q; Cui Y; Wang SGlobal ecosystems face mercury contamination, yet long-term data are scarce, hindering understanding of ecosystem responses to atmospheric Hg input changes. To bridge the data gap and assess ecosystem responses, we compiled and compared a mercury accumulation database from peat, lake, ice and marine deposits worldwide with atmospheric mercury deposition modelled by GEOS-Chem, focusing on trends, magnitudes, spatial-temporal distributions and impact factors. The mercury fluxes in all four deposits showed a 5- to 9-fold increase over 1700-2012, with lake and peat mercury fluxes that generally mirrored atmospheric deposition trends. Significant decreases in lake and peat mercury fluxes post-1950 in Europe evidenced effective environmental policies, whereas rises in East Asia, Africa and Oceania highlighted coal-use impacts, inter alia. Conversely, mercury fluxes in marine and high-altitude ecosystems did not align well with atmospheric deposition, emphasizing natural influences over anthropogenic impacts. Our study underscores the importance of these key regions and ecosystems for future mercury management.
- ItemMulti-Level Process Integration of Heat Pumps in Meat Processing(MDPI (Basel, Switzerland), 2023-04-13) Klinac E; Carson JK; Hoang D; Chen Q; Cleland DJ; Walmsley TG; Zuorro A; Papadopoulos AI; Seferlis PMany countries across the globe are facing the challenge of replacing coal and natural gas-derived process heat with low-emission alternatives. In countries such as New Zealand, which have access to renewably generated electricity, industrial heat pumps offer great potential to reduce sitewide industrial carbon emissions. In this paper, a new Pinch-based Total Site Heat Integration (TSHI) method is proposed and used to explore and identify multi-level heat pump integration options at a meat processing site in New Zealand. This novel method improves upon standard methods that are currently used in industry and successfully identifies heat pump opportunities that might otherwise be missed by said standard methods. The results of the novel method application suggest that a Mechanical Vapour Recompression (MVR) system in the Rendering plant and a centralized air-source heat pump around the hot water ring main could reduce site emissions by over 50%. Future research will develop these preliminary results into a dynamic emissions reduction plan for the site, the novel methods for which will be transferrable to similar industrial sites.
- ItemNphos: Database and Predictor of Protein N-phosphorylation.(Oxford University Press, 2024-04-10) Zhao M-X; Ding R-F; Chen Q; Meng J; Li F; Fu S; Huang B; Liu Y; Ji Z-L; Zhao Y; Xue YProtein N-phosphorylation is widely present in nature and participates in various biological processes. However, current knowledge on N-phosphorylation is extremely limited compared to that on O-phosphorylation. In this study, we collected 11,710 experimentally verified N-phosphosites of 7344 proteins from 39 species and subsequently constructed the database Nphos to share up-to-date information on protein N-phosphorylation. Upon these substantial data, we characterized the sequential and structural features of protein N-phosphorylation. Moreover, after comparing hundreds of learning models, we chose and optimized gradient boosting decision tree (GBDT) models to predict three types of human N-phosphorylation, achieving mean area under the receiver operating characteristic curve (AUC) values of 90.56%, 91.24%, and 92.01% for pHis, pLys, and pArg, respectively. Meanwhile, we discovered 488,825 distinct N-phosphosites in the human proteome. The models were also deployed in Nphos for interactive N-phosphosite prediction. In summary, this work provides new insights and points for both flexible and focused investigations of N-phosphorylation. It will also facilitate a deeper and more systematic understanding of protein N-phosphorylation modification by providing a data and technical foundation. Nphos is freely available at http://www.bio-add.org/Nphos/ and http://ppodd.org.cn/Nphos/.
- ItemPartial Biodegradable Blend with High Stability against Biodegradation for Fused Deposition Modeling(MDPI AG, 11/04/2022) Harris M; Mohsin H; Potgieter J; Ishfaq K; Archer R; Chen Q; De silva K; Guen M-JL; Wilson R; Arif KThis research presents a partial biodegradable polymeric blend aimed for large-scale fused deposition modeling (FDM). The literature reports partial biodegradable blends with high contents of fossil fuel-based polymers (>20%) that make them unfriendly to the ecosystem. Furthermore, the reported polymer systems neither present good mechanical strength nor have been investigated in vulnerable environments that results in biodegradation. This research, as a continuity of previous work, presents the stability against biodegradability of a partial biodegradable blend prepared with polylactic acid (PLA) and polypropylene (PP). The blend is designed with intended excess physical interlocking and sufficient chemical grafting, which has only been investigated for thermal and hydrolytic degradation before by the same authors. The research presents, for the first time, ANOVA analysis for the statistical evaluation of endurance against biodegradability. The statistical results are complemented with thermochemical and visual analysis. Fourier transform infrared spectroscopy (FTIR) determines the signs of intermolecular interactions that are further confirmed by differential scanning calorimetry (DSC). The thermochemical interactions observed in FTIR and DSC are validated with thermogravimetric analysis (TGA). Scanning electron microscopy (SEM) is also used as a visual technique to affirm the physical interlocking. It is concluded that the blend exhibits high stability against soil biodegradation in terms of high mechanical strength and high mass retention percentage.
- ItemReprocessable Epoxy-Anhydride Resin Enabled by a Thermally Stable Liquid Transesterification Catalyst.(MDPI (Basel, Switzerland), 2024-11-20) Liang H; Tian W; Xu H; Ge Y; Yang Y; He E; Yang Z; Wang Y; Zhang S; Wang G; Chen Q; Wei Y; Ji Y; Jang K-SIntroducing dynamic ester bonds into epoxy-anhydride resins enhances the reprocessability of the crosslinked network, facilitated by various types of transesterification catalysts. However, existing catalysts, such as metal salts and organic molecules, often struggle with dispersion, volatility, or structural instability issues. Here, we propose to solve such problems by incorporating a liquid-state, thermally stable transesterification catalyst into epoxy resins. This catalyst, an imidazole derivative, can be uniformly dispersed in the epoxy resin at room temperature. In addition, it shows high-temperature structural stability above at least 200 °C as the synergistic effects of the electron-withdrawing group and steric bulk can be leveraged. It can also effectively promote transesterification at elevated temperatures, allowing for the effective release of shear stress. This property enables the thermal recycling and reshaping of the fully crosslinked epoxy-anhydride resin. This strategy not only enhances the functionality of epoxy resins but also broadens their applicability across various thermal and mechanical environments.
- ItemRepurposing Grape Marc in marlborough: The Way Forward - from Assessment of Options to Next Steps(Marlborough District Council, 2020-06-03) Jones J; McLaren S; Chen QFive options for repurposing grape marc in Marlborough have been investigated in the techno-enviro-economic analyses presented in two reports and at two fora . The two fora were attended by wine industry representatives. A number of the participants attending the second forum have agreed to establish a Working Group. A first meeting is planned, to which representatives of the major peak bodies and wine industry groups will be invited. The Working Group will determine the option or options to take to Stage II development. This study was initiated by the Marlborough District Council and is funded in part by them and by the Waste Minimisation Fund. The motivation to consider alternatives for repurposing grape marc has a number of contributing factors; (i), the quantity of grape marc is large, estimated in 2019 at 46,000 tonnes from 305,467 tonnes of pressed grapes, which produce an estimated 218 million litres of wine; (ii), the vineyard area is expanding rapidly, from 25,135 ha (2017) to 27,808 ha (2020). (iii), earlier attempts to compost grape marc led to prosecution of some operators for poor environmental outcomes; (iv), direct land-spreading of raw grape marc has arisen as the preferred activity but is not without environmental risk; (v), both direct land-spreading and composting require land and necessitate take-back arrangements with winegrowers; and (vi), neither composting nor direct land-spreading offer the opportunity to value add. All five options investigated here avoid that risk. They are: • best-practice composting; • drying to make dried grape marc for sale; • combustion to generate steam to make electricity; • gasification to produce electricity in gas engines and excess heat; and, • pyrolysis to produce biochar/charcoal and excess heat. Some calculations are also included for comparison with direct land-spreading of raw grape marc. A number of these options have viable commercialisation pathways that balance positive environmental outcomes with volume reduction of grape marc and profitability. They all require capital investment. This report summarises the options and presents the next steps towards commercialisation. The Working Group will further assess and refine these options.
- ItemResearch Report - Repurposing Grape Marc(Marlborough District Council, 2020-03-06) Jones JR; McLaren S; Chen Q; Seraj MSection 1. Executive Report (page 2) Section 2. Background to the Project (page 25) Section 3. Detail Report - Thermal Processes: Technical and Economic Analysis (page 35) Section 4. Detail Report - Environmental Analysis by Carbon Footprint (page 69)
- ItemStudy of the Interactions between Muscle Fatty Acid Composition, Meat Quality-Related Genes and the Ileum Microbiota in Tibetan Sheep at Different Ages.(MDPI (Basel, Switzerland), 2024-02-23) Wang F; Sha Y; Liu X; He Y; Hu J; Wang J; Li S; Shao P; Chen X; Yang W; Chen Q; Gao M; Huang W; Panea BThe intestinal microbiota of ruminants is an important factor affecting animal production and health. Research on the association mechanism between the intestinal microbiota and meat quality of ruminants will play a positive role in understanding the formation mechanism of meat quality in ruminants and improving production efficiency. In this study, the fatty acid composition and content, expression of related genes, and structural characteristics of the ileum microbiota of ewes of Tibetan sheep at different ages (4 months, 1.5 years, 3.5 years, and 6 years) were detected and analyzed. The results revealed significant differences in fatty acid composition and content in the muscle of Tibetan sheep at different ages (p < 0.05); in addition, the content of MUFAs in the longissimus dorsi muscle and leg muscle was higher. Similarly, the expressions of muscle-related genes differed among the different age groups, and the expression of the LPL, SCD, and FABP4 genes was higher in the 1.5-year-old group. The ileum microbiota diversity was higher in the 1.5-year-old group, the Romboutsia abundance ratio was significantly higher in the 1.5-year-old group (p < 0.05), and there was a significant positive correlation with oleic acid (C18:1n9c) (p < 0.05). In conclusion, the content of beneficial fatty acids in the longissimus dorsi muscle and leg muscle of Tibetan sheep was higher at 1.5 years of age, and the best slaughter age was 1.5 years. This study provides a reference for in-depth research on the mechanism of the influence of the gut microbiota on meat quality and related regulation.
- ItemSupplementation with Astragalus Root Powder Promotes Rumen Microbiota Density and Metabolome Interactions in Lambs(MDPI (Basel, Switzerland), 2024-03-02) Shao P; Sha Y; Liu X; He Y; Wang F; Hu J; Wang J; Li S; Chen X; Yang W; Chen Q; Gao MThe gut microbiota is highly symbiotic with the host, and the microbiota and its metabolites are essential for regulating host health and physiological functions. Astragalus, as a feed additive, can improve animal immunity. However, the effects of Astragalus root powder on the rumen microbiota and their metabolites in lambs are not apparent. In this study, thirty healthy Hu sheep lambs with similar body weights (17.42 ± 2.02 kg) were randomly selected for the feeding experiment. Lambs were fed diets supplemented with 0.3% Astragalus root powder, and the rumen microbiota density and metabolome were measured to determine the effects of Astragalus on the health of lambs in the rumen. The results showed that the relative abundance of Butyrivibrio fibrisolvens (Bf), Ruminococcus flavefaciens (Rf), Succiniclasticum (Su), and Prevotella (Pr) in the rumen was increased in the Astragalus group (p < 0.01), and metabolic profiling showed that the metabolites, such as L-lyrosine and L-leucine, were upregulated in the Astragalus group (p < 0.01). KEGG functional annotation revealed that upregulated metabolites were mainly enriched in the pathways of amino acid metabolism, lipid metabolism, fatty acid biosynthesis, and bile secretion in the Astragalus group, and downregulated metabolites were enriched in the pathways of methane metabolism and other pathways. Correlation analysis revealed that butyric acid was positively correlated with Roseburia and Blautia (p < 0.05) and negatively correlated with Desulfovibrio (p < 0.05). Thus, by analyzing the interactions of Astragalus root powder with the density of rumen microorganisms and their metabolites in lambs, it was shown that Astragalus root powder could improve the structure of rumen microbiota and their metabolites and then participate in the regulation of amino acid metabolism, lipid metabolism, immune metabolism, and other pathways to improve the efficiency of energy absorption of the lambs.
- ItemUnique rumen micromorphology and microbiota-metabolite interactions: features and strategies for Tibetan sheep adaptation to the plateau.(Frontiers Media S.A., 2024-10-09) Chen Q; Sha Y; Liu X; He Y; Chen X; Yang W; Gao M; Huang W; Wang J; He J; Wang L; Zhang LThe rumen microbiota-a symbiont to its host and consists of critical functional substances-plays a vital role in the animal body and represents a new perspective in the study of adaptive evolution in animals. This study used Slide Viewer slicing analysis system, gas chromatography, RT-qPCR and other technologies, as well as 16S and metabolomics determination methods, to measure and analyze the microstructure of rumen epithelium, rumen fermentation parameters, rumen transport genes, rumen microbiota and metabolites in Tibetan sheep and Hu sheep. The results indicate that the rumen nipple height and cuticle thickness of Tibetan sheep are significantly greater than those of Hu sheep (p < 0.01) and that the digestion and absorption of forage are greater. The levels of carbohydrate metabolism, lipid metabolism, and protein turnover were increased in Tibetan sheep, which enabled them to ferment efficiently, utilize forage, and absorb metabolic volatile fatty acids (VFAs). Tibetan sheep rumen metabolites are related to immune function and energy metabolism, which regulate rumen growth and development and gastrointestinal homeostasis. Thus, compared with Hu sheep, Tibetan sheep have more rumen papilla and cuticle corneum, and the synergistic effect of the microbiota and its metabolites is a characteristic and strategy for adapting to high-altitude environments.