Browsing by Author "Acevedo-Fani A"
Now showing 1 - 14 of 14
Results Per Page
Sort Options
- ItemA higher-protein nut-based snack product suppresses glycaemia and decreases glycaemic response to co-ingested carbohydrate in an overweight prediabetic Asian Chinese cohort: the Tū Ora postprandial RCT(Cambridge University Press on behalf of The Nutrition Society, 2021-04-23) Lu LW; Silvestre MP; Sequeira IR; Plank LD; Foster M; Middleditch N; Acevedo-Fani A; Hollingsworth KG; Poppitt SDNut-based products may aid low-glycaemic dietary strategies that are important for diabetes prevention in populations at increased risk of dysglycaemia, such as Asian Chinese. This randomised cross-over trial assessed the postprandial glycaemic response (0-120 min) of a higher-protein nut-based (HP-NB) snack formulation, in bar format (1009 kJ, Nutrient Profiling Score, NPS, -2), when compared with an iso-energetic higher-carbohydrate (CHO) cereal-based bar (HC-CB, 985 kJ, NPS +3). It also assessed the ability to suppress glucose response to a typical CHO-rich food (white bread, WB), when co-ingested. Ten overweight prediabetic Chinese adults (mean, sd: age 47⋅9, 15⋅7 years; BMI 25⋅5, 1⋅6 kg/m2), with total body fat plus ectopic pancreas and liver fat quantified using dual-energy X-ray absorptiometry and magnetic resonance imaging and spectroscopy, received the five meal treatments in random order: HP-NB, HC-CB, HP-NB + WB (50 g available CHO), HC-CB + WB and WB only. Compared with HC-CB, HP-NB induced a significantly lower 30-120 min glucose response (P < 0⋅05), with an approximately 10-fold lower incremental area under the glucose curve (iAUC0-120; P < 0⋅001). HP-NB also attenuated glucose response by approximately 25 % when co-ingested with WB (P < 0⋅05). Half of the cohort had elevated pancreas and/or liver fat, with 13-21 % greater suppression of iAUC0-120 glucose in the low v. high organ fat subgroups across all five treatments. A nut-based snack product may be a healthier alternative to an energy equivalent cereal-based product with evidence of both a lower postprandial glycaemic response and modulation of CHO-induced hyperglycaemia even in high-risk, overweight, pre-diabetic adults.
- ItemA proposed framework to establish in vitro-in vivo relationships using gastric digestion models for food research(The Royal Society of Chemistry, 2024-10-21) Nadia J; Roy D; Montoya CA; Singh H; Acevedo-Fani A; Bornhorst GMIn vitro digestion methods have been utilized in food research to reduce in vivo studies. Although previous studies have related in vitro and in vivo data, there is no consensus on how to establish an in vitro-in vivo relationship (IVIVR) for food digestion. A framework that serves as a tool to evaluate the utility and limitations of in vitro approaches in simulating in vivo processes is proposed to develop IVIVRs for food digestion, with a focus on the gastric phase as the main location of food structural breakdown during digestion. The IVIVR consists of three quantitative levels (A, B, and C) and a qualitative level (D), which relate gastric digestion kinetic data on a point-to-point basis, parameters derived from gastric digestion kinetic data, in vitro gastric digestion parameters with in vivo absorption or appearance parameters, and in vitro and in vivo trends, respectively. Level A, B, and C IVIVRs can be used to statistically determine the agreement between in vitro and in vivo data. Level A and B IVIVRs can be utilized further evaluate the accuracy of the in vitro approach to mimic in vivo processes. To exemplify the utilization of this framework, case studies are provided using previously published static and dynamic gastric in vitro digestion data and in vivo animal study data. Future food digestion studies designed to establish IVIVRs should be conducted to refine and improve the current framework, and to improve in vitro digestion approaches to better mimic in vivo phenomena.
- ItemBiophysical insights into modulating lipid digestion in food emulsions(Elsevier Ltd, 2022-01) Acevedo-Fani A; Singh HDuring the last decade, major scientific advances on understanding the mechanisms of lipid digestion and metabolism have been made, with a view to addressing health issues (such as obesity) associated with overconsumption of lipid-rich and sucrose-rich foods. As lipids in common foods exist in the form of emulsions, the structuring of emulsions has been one the main strategies for controlling the rate of lipid digestion and absorption, at least from a colloid science viewpoint. Modulating the kinetics of lipid digestion and absorption offers interesting possibilities for developing foods that can provide control of postprandial lipaemia and control the release of lipophilic compounds. Food emulsions can be designed to achieve considerable differences in the kinetics of lipid digestion but most research has been applied to relatively simple model systems and in in vitro digestion models. Further research to translate this knowledge into more complex food systems and to validate the results in human studies is required. One promising approach to delay/control lipid digestion is to alter the stomach emptying rate of lipids, which is largely affected by interactions of emulsion droplets with the food matrices. Food matrices with different responses to the gastric environment and with different interactions between oil droplets and the food matrix can be designed to influence lipid digestion. This review focuses on key scientific advances made during the last decade on understanding the physicochemical and structural modifications of emulsified lipids, mainly from a biophysical science perspective. The review specifically explores different approaches by which the structure and stability of emulsions may be altered to achieve specific lipid digestion kinetics.
- ItemDelivery of encapsulated bioactive compounds within food matrices to the digestive tract: recent trends and future perspectives(Taylor and Francis Group, 2024-05-31) Qazi HJ; Ye A; Acevedo-Fani A; Singh HEncapsulation technologies have achieved encouraging results improving the stability, bioaccessibility and absorption of bioactive compounds post-consumption. There is a bulk of published research on the gastrointestinal behavior of encapsulated bioactive food materials alone using in vitro and in vivo digestion models, but an aspect often overlooked is the impact of the food structure, which is much more complex to unravel and still not well understood. This review focuses on discussing the recent findings in the application of encapsulated bioactive components in fabricated food matrices. Studies have suggested that the integration of encapsulated bioactive compounds has been proven to have an impact on the physicochemical characteristics of the finished product in addition to the protective effect of encapsulation on the fortified bioactive compound. These products containing bioactive compounds undergo further structural reorganization during digestion, impacting the release and emptying rates of fortified bioactive compounds. Thus, by manipulation of various food structures and matrices, the release and delivery of these bioactive compounds can be altered. This knowledge provides new opportunities for designing specialized foods for specific populations.
- ItemDynamic In Vitro Gastric Digestion Behaviour of Commercial Infant Formulae Made with Cow, Goat and Sheep Milk(MDPI (Basel, Switzerland), 2024-04-23) Song X; Wang X; Yang M; Acevedo-Fani A; Singh H; Ye A; De Noni IThere are a wide range of commercial infant formulae available on the market. These are made using milk from different species, such as goat, sheep, and cow. The different protein compositions of these milks and the process used during infant-formulae manufacture, such as heat treatment, may impact the digestion of nutrients. This study compared the effect of protein composition and heat treatment on the in vitro gastric digestion behaviour of commercial infant formulae made with cow, goat, and sheep milk using a dynamic infant human gastric simulator (IHGS). During the simulated dynamic gastric digestion, the goat milk infant formula (GIF) showed earlier signs of aggregate formation compared to cow milk infant formula (CIF) and sheep milk infant formula (SIF). In addition, the microstructures of GIF chyme showed fragmented and porous structures. On the contrary, CIF formed dense protein networks that trapped oil droplets, whereas SIF exhibited a microstructure of smooth oil droplets surrounded by fewer protein networks. The different aggregation behaviours and aggregate structures of the three infant-formulae chyme were related to their different protein compositions, especially the different casein compositions. Furthermore, the open fragile structure of GIF aggregates provided easier access to pepsin, allowing it to hydrolyse protein. The results from the present study provided some information to assist in understanding the coagulation and digestion behaviours of commercial infant formulae made from different species of milk.
- ItemEdible films from essential-oil-loaded nanoemulsions: Physicochemical characterization and antimicrobial properties(1/05/2015) Acevedo-Fani A; Salvia-Trujillo L; Rojas-Graü MA; Martín-Belloso OEdible films including active ingredients can be used as an alternative to preserve food products. Essential oils (EOs) exhibit antimicrobial activity against pathogenic microorganisms but their low water solubility limits the application in foods. To improve water dispersion and protect EOs from degradation, nano-sized emulsions emerge as a viable alternative. Nanoemulsions containing EOs and polysaccharides could be used to form edible films with functional properties. This study was focused on the evaluation of physical, mechanical and antimicrobial properties of alginate-based edible films formed from nanoemulsions of EOs. Nanoemulsions containing thyme (TH-EO), lemongrass (LG-EO) or sage (SG-EO) oil as dispersed phase and sodium alginate solution as continuous phase were prepared. The average droplet size of nanoemulsions was reduced after the microfluidization treatment exhibiting multimodal size distributions. The ζ-potentials of nanoemulsions were between-41mV and-70mV depending on the type of EO used. The lowest whiteness index was found in SG-EO nanoemulsions, whereas those containing TH-EO showed the highest value. Films formed from SG-EO nanoemulsions exhibited higher transparency, water vapor resistance and flexibility than films formed from TH-EO or LG-EO. Edible films containing TH-EO were those with the strongest antimicrobial effect against inoculated Escherichia coli, achieving up to 4.71Log reductions after 12h. Results obtained in the present work evidence the suitability of using nanoemulsions with active ingredients for the formation of edible films, with different physical and functional properties.
- ItemGlycaemic Response to a Nut-Enriched Diet in Asian Chinese Adults with Normal or High Glycaemia: The Tū Ora RCT(MDPI (Basel, Switzerland), 2024-07) Sequeira-Bisson IR; Lu LW; Silvestre MP; Plank LD; Middleditch N; Acevedo-Fani A; Parry-Strong A; Hollingsworth KG; Tups A; Miles-Chan JL; Krebs JD; Foster M; Poppitt SD; Pribis PNut-based products are a good source of high-quality plant protein in addition to mono- and polyunsaturated fatty acids, and may aid low-glycaemic dietary strategies important for the prevention of type 2 diabetes (T2D). In particular, they may be advantageous in populations susceptible to dysglycaemia, such as Asian Chinese. The present study aimed to compare effects of a higher-protein nut bar (HP-NB, also higher in total fibre and unsaturated fats, comprising mixed almonds and peanuts) vs. an isoenergetic higher-carbohydrate cereal bar (HC-CB) within the diet of 101 Chinese adults with overweight and normo- or hyperglycaemia. Ectopic pancreas and liver fat were characterised using magnetic resonance imaging and spectroscopy (MRI/S) as a secondary outcome. Participants were randomized to receive HP-NB or HC-CB daily as a 1 MJ light meal or snack replacement, in addition to healthy eating advice. Anthropometry and clinical indicators of T2D risk were assessed fasted and during an oral glucose tolerance test (OGTT), pre- and post-intervention. No significant difference was observed between diet groups for body weight, body mass index, waist or hip circumference, blood pressure, glucoregulatory markers, lipid profile or inflammatory markers over 12 weeks (all, p > 0.05). No difference was observed between glycaemic subgroups or those with normal versus high ectopic organ fat. Although HP-NB can attenuate postprandial glycaemia following a meal, no effects were observed for either fasting or glucose-mediated outcomes following longer-term inclusion in the habitual diet of Chinese adults with overweight, including at-risk subgroups.
- ItemHeat-induced interactions between microfluidized hemp protein particles and caseins or whey proteins(Elsevier Ltd, 2025-01) Ma S; Ye A; Singh H; Acevedo-Fani AThe rising demand for sustainable proteins leads to increased interest in plant proteins like hemp protein (HP). However, commercial HP's poor functionality, including heat aggregation, limit its use. This study explored the heat-induced interactions of hemp protein particles (HPPs) with milk proteins, specifically whey proteins and caseins. Using various analysis techniques-static light scattering, TEM, SDS electrophoresis, surface hydrophobicity, and free sulfhydryl content-results showed that co-heating HPPs with whey protein isolate (WPI) or sodium caseinate (NaCN) at 95 °C for 20 min reduced HPPs aggregation. HPPs/WPI particles had a d4,3 of ∼3.8 μm, while HPPs/NaCN were ∼1.9 μm, compared to ∼27.5 μm for HPPs alone. SDS-PAGE indicated that whey proteins irreversibly bound to HPPs, through disulfide bonds, whereas casein bound reversibly, possibly involving the chaperone-like property of casein. This study proposes possible mechanisms by which HPPs interact with milk proteins and impact protein aggregation. This may provide opportunities for developing hybrid protein microparticles
- ItemHeat-induced interactions of hemp protein particles formed by microfluidisation with β-lactoglobulin(Elsevier Ltd, 2024-07-01) Ma S; Acevedo-Fani A; Ye A; Singh HThis study explored the effect of microfluidization on the dispersibility of hempseed protein (HP) and the interactions of microfluidised HP particles with β-lactoglobulin (β-lg) after heat treatment. Microfluidization increased the dispersible protein fraction from 10% (non-microfluidised) to a maximum of 58% (200 MPa, 6 passes) in HP dispersions. Dispersible HP particles were within the micro-sized range (d4,3 ≤ 2 μm) after microfluidization. Heat treatment (95 °C, 10–60 min) of HP particles with β-lactoglobulin (β-lg) induced protein association by sulphydryl-disulphide exchange reactions; β-lg association with HP particles initiated within the first 20 min. Additionally, the particle size (d4,3) values of co-heated HP particles with β-lg were significantly smaller than those found in HP particle dispersions heated alone, results that were in line with microscopy analysis. This suggests that β-lg could have restricted HP particle aggregation. In conclusion, combining microfluidization and heat treatment could offer a venue to modify the physical properties of plant/milk protein mixtures.
- ItemImpact of Recombined Milk Systems on Gastrointestinal Fate of Curcumin Nanoemulsion(Frontiers Media S.A., 2022-06-23) Qazi HJ; Ye A; Acevedo-Fani A; Singh H; Santini AMilk powder is an important ingredient in various foods and pediatric formulations. The textural and digestion properties of the formulations depend on the preheat treatment of the milk powder during manufacture. Thus, it is interesting to know how these modifications can influence on the release of fortified bioactive compounds during digestion with a milk matrix. In this study, a curcumin nanoemulsion was incorporated into milks reconstituted from low-heat, medium-heat and high-heat skim milk powders (SMPs) and the milks were subjected to semi dynamic in vitro digestion. All the recombined milk systems formed a curd under gastric conditions, which reduced the gastric emptying of protein and curcumin-loaded oil droplets. Because of the formation of heat-induced casein/whey protein complexes, the open fragmented curd formed by the high-heat-treated reconstituted powder resulted in higher protein and oil droplets emptying to the intestine and higher curcumin bioaccessibility. This study provides useful information for how protein ingredients can govern the fate of added health-promoting compounds during digestion.
- ItemNature-Assembled Structures for Delivery of Bioactive Compounds and Their Potential in Functional Foods(Frontiers Media SA, 24/09/2020) Acevedo-Fani A; Dave A; Singh HConsumers are demanding more natural, healthy, and high-quality products. The addition of health-promoting substances, such as bioactive compounds, to foods can boost their therapeutic effect. However, the incorporation of bioactive substances into food products involves several technological challenges. They may have low solubility in water or poor stability in the food environment and/or during digestion, resulting in a loss of their therapeutic properties. Over recent years, the encapsulation of bioactive compounds into laboratory-engineered colloidal structures has been successful in overcoming some of these hurdles. However, several nature-assembled colloidal structures could be employed for this purpose and may offer many advantages over laboratory-engineered colloidal structures. For example, the casein micelles and milk fat globules from milk and the oil bodies from seeds were designed by nature to deliver biological material or for storage purposes. These biological functional properties make them good candidates for the encapsulation of bioactive compounds to aid in their addition into foods. This review discusses the structure and biological function of different nature-assembled carriers, preparation/isolation methods, some of the advantages and challenges in their use as bioactive compound delivery systems, and their behavior during digestion.
- ItemProtein bodies from hemp seeds: Isolation, microstructure and physicochemical characterisation(Elsevier Ltd, 2024-04) Do DT; Ye A; Singh H; Acevedo-Fani AProtein bodies are naturally occurring storage organelles in plant seeds. Although the microstructure of protein bodies has been studied, their physicochemical behaviour and stability under different environmental conditions remain poorly understood. In this study, hemp seed protein bodies (HPBs) were obtained using a sonication-assisted aqueous enzymatic extraction method. Then, their microstructures were characterised using various microscopic techniques. Next, the protein composition was determined using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS–PAGE). Lastly, the influence of pH (2–13) on the colloidal stability and structural integrity of aqueous HPB dispersions was investigated. Detailed microscopic examination showed that the HPBs exhibited spherical shape with an average diameter of about 4.6 μm. The structure consisted of a protein crystalloid and several phytin globoids, all surrounded by a proteinaceous matrix and a single membrane. Globulin edestin was the most abundant storage protein in the HPBs as revealed by SDS–PAGE. The HPB dispersions exhibited excellent colloidal stability only at neutral pH as opposed to their aggregation and/or solubilisation at other pH levels tested. The HPBs also showed irreversible structural changes in response to pH variation. Specifically, little to no swelling of the particles was observed at pH 5 (around the isoelectric point (pI) of the hemp protein). However, when the pH shifted away from the pI, swelling, rupture and eventual dissolution of the particles were pronounced under both extreme acidic and alkaline conditions. These physicochemical behaviours make the HPBs an interesting pH-sensitive material for food applications, which will be explored in subsequent studies.
- ItemRuminant Milk-Derived Extracellular Vesicles: A Nutritional and Therapeutic Opportunity?(MDPI (Basel, Switzerland), 2021-07-22) Ong SL; Blenkiron C; Haines S; Acevedo-Fani A; Leite JAS; Zempleni J; Anderson RC; McCann MJ; Chassard CMilk has been shown to contain a specific fraction of extracellular particles that are reported to resist digestion and are purposefully packaged with lipids, proteins, and nucleic acids to exert specific biological effects. These findings suggest that these particles may have a role in the quality of infant nutrition, particularly in the early phase of life when many of the foundations of an infant's potential for health and overall wellness are established. However, much of the current research focuses on human or cow milk only, and there is a knowledge gap in how milk from other species, which may be more commonly consumed in different regions, could also have these reported biological effects. Our review provides a summary of the studies into the extracellular particle fraction of milk from a wider range of ruminants and pseudo-ruminants, focusing on how this fraction is isolated and characterised, the stability and uptake of the fraction, and the reported biological effects of these fractions in a range of model systems. As the individual composition of milk from different species is known to differ, we propose that the extracellular particle fraction of milk from non-traditional and minority species may also have important and distinct biological properties that warrant further study.
- ItemStructural and Physicochemical Characteristics of Oil Bodies from Hemp Seeds (Cannabis sativa L.)(MDPI (Basel, Switzerland), 2021-11-26) Garcia FL; Ma S; Dave A; Acevedo-Fani A; Fiorini DThe structural and physicochemical characteristics of oil bodies from hemp seeds were explored in this study. Oil bodies from several plant-based sources have been previously studied; however, this is the first time a characterisation of oil bodies from the seeds of industrial hemp is provided. The morphology of oil bodies in hemp seeds and after extraction was investigated using cryo-scanning electron microscopy (cryo-SEM), and the interfacial characteristics of isolated oil bodies were studied by confocal laser scanning microscopy (CLSM). Proteins associated with oil bodies were characterised using sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). The effect of pH and ionic strength on colloidal properties of the oil bodies was investigated. Oil bodies in hemp seeds appeared spherical and sporadically distributed in the cell, with diameters of 3 to 5 μm. CLSM images of isolated oil bodies revealed the uniform distribution of phospholipids and proteins at their interface. Polyunsaturated fatty acids were predominant in the lipid fraction and linoleic acid accounted for ≈61% of the total fatty acids. The SDS-PAGE analysis of washed and purified oil bodies revealed major bands at 15 kDa and 50-25 kDa, which could be linked to membrane-specific proteins of oil bodies or extraneous proteins. The colloidal stability of oil bodies in different pH environments indicated that the isoelectric point was between pH 4 and 4.5, where oil bodies experienced maximum aggregation. Changes in the ionic strength decreased the interfacial charge density of oil bodies (ζ-potential), but it did not affect their mean particle size. This suggested that the steric hindrance provided by membrane-specific proteins at the interface of the oil bodies could have prevented them from flocculation at low interfacial charge density. The results of this study provide new tertiary knowledge on the structure, composition, and colloidal properties of oil bodies extracted from hemp seeds, which could be used as natural emulsions or lipid-based delivery systems for food products.