General relations between sums of squares and sums of triangular numbers

dc.contributor.authorChandrashekar, Adiga
dc.contributor.authorCooper, Shaun
dc.contributor.authorHan, Jung Hun
dc.date.accessioned2013-05-14T02:23:15Z
dc.date.available2013-05-14T02:23:15Z
dc.date.issued2004
dc.description.abstractLet = ( 1, · · · , m) be a partition of k. Let r (n) denote the number of solutions in integers of 1x21 + · · · + mx2 m = n, and let t (n) denote the number of solutions in non negative integers of 1x1(x1 +1)/2+· · ·+ mxm(xm +1)/2 = n. We prove that if 1 k 7, then there is a constant c , depending only on , such that r (8n + k) = c t (n), for all integers n.en
dc.identifier.citationChandrashekar, A., Cooper, S., Han, J.H. (2004), General relations between sums of squares and sums of triangular numbers, Research Letters in the Information and Mathematical Sciences, 6, 157-161en
dc.identifier.issn1175-2777
dc.identifier.urihttp://hdl.handle.net/10179/4428
dc.language.isoenen
dc.publisherMassey Universityen
dc.subjectIntegersen
dc.titleGeneral relations between sums of squares and sums of triangular numbersen
dc.typeArticleen
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
General_relations_between_sums_of_squares_and_sums_of_triangular_numbers.pdf
Size:
131.78 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: