Sub-micron moulding topological mass transport regimes in angled vortex fluidic flow

dc.citation.issue11
dc.citation.volume3
dc.contributor.authorAlharbi TMD
dc.contributor.authorJellicoe M
dc.contributor.authorLuo X
dc.contributor.authorVimalanathan K
dc.contributor.authorAlsulami IK
dc.contributor.authorAl Harbi BS
dc.contributor.authorIgder A
dc.contributor.authorAlrashaidi FAJ
dc.contributor.authorChen X
dc.contributor.authorStubbs KA
dc.contributor.authorChalker JM
dc.contributor.authorZhang W
dc.contributor.authorBoulos RA
dc.contributor.authorJones DB
dc.contributor.authorQuinton JS
dc.contributor.authorRaston CL
dc.coverage.spatialEngland
dc.date.accessioned2023-12-15T01:20:16Z
dc.date.accessioned2024-07-25T06:35:46Z
dc.date.available2021-04-28
dc.date.available2023-12-15T01:20:16Z
dc.date.available2024-07-25T06:35:46Z
dc.date.issued2021-06-07
dc.description.abstractShear stress in dynamic thin films, as in vortex fluidics, can be harnessed for generating non-equilibrium conditions, but the nature of the fluid flow is not understood. A rapidly rotating inclined tube in the vortex fluidic device (VFD) imparts shear stress (mechanical energy) into a thin film of liquid, depending on the physical characteristics of the liquid and rotational speed, ω, tilt angle, θ, and diameter of the tube. Through understanding that the fluid exhibits resonance behaviours from the confining boundaries of the glass surface and the meniscus that determines the liquid film thickness, we have established specific topological mass transport regimes. These topologies have been established through materials processing, as spinning top flow normal to the surface of the tube, double-helical flow across the thin film, and spicular flow, a transitional region where both effects contribute. The manifestation of mass transport patterns within the film have been observed by monitoring the mixing time, temperature profile, and film thickness against increasing rotational speed, ω. In addition, these flow patterns have unique signatures that enable the morphology of nanomaterials processed in the VFD to be predicted, for example in reversible scrolling and crumbling graphene oxide sheets. Shear-stress induced recrystallisation, crystallisation and polymerisation, at different rotational speeds, provide moulds of high-shear topologies, as 'positive' and 'negative' spicular flow behaviour. 'Molecular drilling' of holes in a thin film of polysulfone demonstrate spatial arrangement of double-helices. The grand sum of the different behavioural regimes is a general fluid flow model that accounts for all processing in the VFD at an optimal tilt angle of 45°, and provides a new concept in the fabrication of novel nanomaterials and controlling the organisation of matter.
dc.format.pagination3064-3075
dc.identifier.author-urlhttps://www.ncbi.nlm.nih.gov/pubmed/36133664
dc.identifier.citationAlharbi TMD, Jellicoe M, Luo X, Vimalanathan K, Alsulami IK, Al Harbi BS, Igder A, Alrashaidi FAJ, Chen X, Stubbs KA, Chalker JM, Zhang W, Boulos RA, Jones DB, Quinton JS, Raston CL. (2021). Sub-micron moulding topological mass transport regimes in angled vortex fluidic flow.. Nanoscale Adv. 3. 11. (pp. 3064-3075).
dc.identifier.doi10.1039/d1na00195g
dc.identifier.eissn2516-0230
dc.identifier.elements-typejournal-article
dc.identifier.issn2516-0230
dc.identifier.piid1na00195g
dc.identifier.urihttps://mro.massey.ac.nz/handle/10179/70512
dc.languageeng
dc.publisherThe Royal Society of Chemistry
dc.relation.isPartOfNanoscale Adv
dc.rights(c) The author/sen
dc.rights.licenseCC BYen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en
dc.titleSub-micron moulding topological mass transport regimes in angled vortex fluidic flow
dc.typeJournal article
pubs.elements-id452322
pubs.organisational-groupOther
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Published
Size:
3.6 MB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
Evidence
Size:
329.91 KB
Format:
Adobe Portable Document Format
Description:
Collections