Institute of Natural and Mathematical Sciences
Permanent URI for this community
Browse
Browsing Institute of Natural and Mathematical Sciences by Subject "AdaBoost"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemAccelerated face detector training using the PSL framework(Massey University, 2009) Susnjak, T.; Barczak, A.L.C.; Hawick, K.A.We train a face detection system using the PSL framework [1] which combines the AdaBoost learning algorithm and Haar-like features. We demonstrate the ability of this framework to overcome some of the challenges inherent in training classifiers that are structured in cascades of boosted ensembles (CoBE). The PSL classifiers are compared to the Viola-Jones type cas- caded classifiers. We establish the ability of the PSL framework to produce classifiers in a complex domain in significantly reduced time frame. They also comprise of fewer boosted en- sembles albeit at a price of increased false detection rates on our test dataset. We also report on results from a more diverse number of experiments carried out on the PSL framework in order to shed more insight into the effects of variations in its adjustable training parameters.
- ItemA novel bootstrapping method for positive datasets in cascades of boosted ensembles(Massey University, 2010) Susnjak, T.; Barczak, A.L.C.; Hawick, K.A.We present a novel method for efficiently training a face detector using large positive datasets in a cascade of boosted ensembles. We extend the successful Viola-Jones [1] framework which achieved low false acceptance rates through bootstrapping negative samples with the capability to also bootstrap large positive datasets thereby capturing more in-class variation of the target object. We achieve this form of bootstrapping by way of an additional embedded cascade within each layer and term the new structure as the Bootstrapped Dual-Cascaded (BDC) framework. We demonstrate its ability to easily and efficiently train a classifier on large and complex face datasets which exhibit acute in-class variation.