Journal Articles
Permanent URI for this collection
Browse
Browsing Journal Articles by Subject "0307 Theoretical and Computational Chemistry"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemChemosensory Profile of South Tyrolean Pinot Blanc Wines: A Multivariate Regression Approach(MDPI (Basel, Switzerland), 15/10/2021) Poggesi S; Dupas de Matos A; Longo E; Chiotti D; Pedri U; Eisenstecken D; Robatscher P; Boselli EA multivariate regression approach based on sensory data and chemical compositions has been applied to study the correlation between the sensory and chemical properties of Pinot Blanc wines from South Tyrol. The sensory properties were identified by descriptive analysis and the chemical profile was obtained by HS-SPME-GC/MS and HPLC. The profiles of the most influencing (positively or negatively) chemical components have been presented for each sensory descriptor. Partial Least Square Regression (PLS) and Principal Component Regression (PCR) models have been tested and applied. Visual (clarity, yellow colour), gustatory (sweetness, sourness, saltiness, bitterness, astringency, and warmness) and olfactory (overall intensity, floral, apple, pear, tropical fruit, dried fruit, fresh vegetative, spicy, cleanness, and off-odours) descriptors have been correlated with the volatile and phenolic profiles, respectively. Each olfactory descriptor was correlated via a PCR model to the volatile compounds, whereas a comprehensive PLS2 regression model was built for the correlation between visual/gustatory descriptors and the phenolic fingerprint. "Apple" was the olfactory descriptor best modelled by PCR, with an adjusted R2 of 0.72, with only 20% of the validation samples falling out of the confidence interval (α = 95%). A PLS2 with 6 factors was chosen as the best model for gustatory and visual descriptors related to the phenolic compounds. Finally, the overall quality judgment could be explained by a combination of the calibrated sensory descriptors through a PLS model. This allowed the identification of sensory descriptors such as "olfactory intensity", "warmness", "apple", "saltiness", "astringency", "cleanness", "clarity" and "pear", which relevantly contributed to the overall quality of Pinot Blanc wines from South Tyrol, obtained with two different winemaking processes and aged in bottle for 18 months.
- ItemExacerbated LPS/GalN-Induced Liver Injury in the Stress-Sensitive Wistar Kyoto Rat Is Associated with Changes in the Endocannabinoid System(MDPI (Basel, Switzerland), 2020-09) Killilea M; Kerr DM; Mallard BM; Roche M; Wheatley AMAcute liver injury (ALI) is a highly destructive and potentially life-threatening condition, exacerbated by physical and psychological stress. The endocannabinoid system plays a key role in modulating stress and hepatic function. The aim of this study was to examine the development of acute liver injury in the genetically susceptible stress-sensitive Wistar-Kyoto (WKY) rat compared with normo-stress-sensitive Sprague Dawley (SD) rats, and associated changes in the endocannabinoid system. Administration of the hepatotoxin lipopolysaccharide/D-Galactosamine (LPS/GalN) resulted in marked liver injury in WKY, but not SD rats, with increased alanine aminotransferase (ALT), aspartate aminotransferase (AST) and glutamate dehydrogenase (GLDH) plasma levels, significant histopathological changes, increased hepatic pro-inflammatory cytokine expression and caspase-3 activity and expression and reduced Glutathione (GSH) activity. Furthermore, compared to SD controls, WKY rats display increased anandamide and 2-Arachidonoylglycerol levels concurrent with decreased expression of their metabolic enzymes and a decrease in cannabinoid (CB)1 receptor expression following LPS/GalN. CB1 antagonism with AM6545 or CB2 agonism with JWH133 did not alter LPS/GalN-induced liver injury in SD or WKY rats. These findings demonstrate exacerbation of acute liver injury induced by LPS/GalN in a stress-sensitive rat strain, with effects associated with alterations in the hepatic endocannabinoid system. Further studies are required to determine if the endocannabinoid system mediates or modulates the exacerbation of liver injury in this stress-sensitive rat strain.
- ItemForceGen: Atomic covalent bond value derivation for Gromacs(Springer Berlin Heidelberg, 2018-01) Nash A; Collier TA; Birch HL; de Leeuw NHA large number of crystallographic protein structures include ligands, small molecules and post-translational modifications. Atomic bond force values for computational atomistic models of post-translational or non-standard amino acids, metal binding active sites, small molecules and drug molecules are not readily available in most simulation software packages. We present ForceGen, a Java tool that extracts the bond stretch and bond angle force values and equilibrium values from the Hessian of a Gaussian vibrational frequency analysis. The parameters are compatible with force fields derived using the second order tensor of the Hessian. The output is formatted with the Gromacs topology in mind. This study further demonstrates the use of ForceGen over the quantum mechanically derived structures of a small organic solvent, a naturally occurring protein crosslink derived from two amino acids following post-translational modification and the amino acid ligands of a zinc ion. We then derive Laplacian bond orders to understand how the resulting force values relate back to the quantum mechanical model. The parameterisation of the organic solvent, toluene, was verified using Molecular Mechanics simulations. The structural data from the simulation compared well with the quantum mechanical structure and the system density compared well with experimental values.
- ItemHerbivory and Attenuated UV Radiation Affect Volatile Emissions of the Invasive Weed Calluna vulgaris(MDPI (Basel, Switzerland), 13/07/2020) Effah E; Barrett DP; Peterson PG; Wargent JJ; Potter MA; Holopainen JK; Clavijo McCormick ACalluna vulgaris (heather) is an aggressive invasive weed on the Central Plateau, North Is., New Zealand (NZ), where it encounters different environmental factors compared to its native range in Europe, such as high ultraviolet radiation (UV) and a lack of specialist herbivores. The specialist herbivore Lochmaea suturalis (heather beetle) was introduced from the United Kingdom (UK) in 1996 as a biocontrol agent to manage this invasive weed. Like other plant invaders, a novel environment may be challenging for heather as it adjusts to its new conditions. This process of "adjustment" involves morphological and physiological changes often linked to phenotypic plasticity. The biochemical responses of exotic plants to environmental variables in their invaded range is poorly understood. The production and release of volatile organic compounds (VOCs) is essential to plant communication and highly susceptible to environmental change. This study therefore aimed to explore the VOC emissions of heather in response to different levels of UV exposure, and to feeding damage by L. suturalis. Using tunnel houses clad with UV-selective filters, we measured VOCs produced by heather under NZ ambient, 20% attenuated, and 95% attenuated solar UV treatments. We also compared VOC emissions in the field at adjacent sites where L. suturalis was present or absent. Volatiles produced by the same target heather plants were measured at four different times in the spring and summer of 2018-2019, reflecting variations in beetle's abundance, feeding stage and plant phenology. Heather plants under 95% attenuated UV produced significantly higher amounts of (E)-β-farnesene, decanal, benzaldehyde, and benzeneacetaldehyde compared to 25% attenuated and ambient UV radiation. We also found significant differences in volatiles produced by heather plants in beetle-present versus beetle-absent sites on most sampling occasions. We also recorded a lower number of generalist herbivores on heather at sites where L. suturalis was present. Interactions between invasive plants, a novel environment, and the native communities they invade, are discussed.