Browsing by Author "Zhao R"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemComparative evaluation of pumice as a soilless substrate for indoor Rubus idaeus L. cultivation(Taylor and Francis Group on behalf of the Royal Society of New Zealand, 2024-07-21) Zhao R; Sofkova-Bobcheva S; Cartmill DL; Hardy D; Zernack A; Li MPumice is an abundant natural resource in New Zealand and its application in horticulture could save significant costs. To investigate the effect of pumice substrates on raspberry growth and fruit quality, two dwarfing selections (sel.8 and sel.110) were grown hydroponically in (1) coconut coir (control); (2) pumice; (3) pumice/coir (50/50 v/v); (4) pumice/flax (50/50 v/v). Results showed that the addition of pumice to coir significantly increased bulk density, which provided better root anchor support for plants, and also increased the water holding capacity (WHC). Pure pumice had a higher bulk density and lower porosity compared to the other tested substrates, which enhanced fruit quality and yield, although the vegetative growth was slightly lower compared to the control. Mixed pumice/flax substrate had the lowest porosity and poorer WHC, resulting in inferior raspberry growth vigour and productivity. Our results furthermore suggested different substrates could affect the one-year-old cane height, crop yield and fruit characteristics. Pumice was more suitable for sel.8, while the pumice/coir mixture promoted a higher yield for sel.110. In conclusion, pumice and pumice-based mix substrates can be successfully used for hydroponic dwarfing raspberry production without compromising yield and fruit quality.
- ItemGenomic insights into the secondary aquatic transition of penguins(Springer Nature Limited, 2022-07-19) Cole TL; Zhou C; Fang M; Pan H; Ksepka DT; Fiddaman SR; Emerling CA; Thomas DB; Bi X; Fang Q; Ellegaard MR; Feng S; Smith AL; Heath TA; Tennyson AJD; Borboroglu PG; Wood JR; Hadden PW; Grosser S; Bost C-A; Cherel Y; Mattern T; Hart T; Sinding M-HS; Shepherd LD; Phillips RA; Quillfeldt P; Masello JF; Bouzat JL; Ryan PG; Thompson DR; Ellenberg U; Dann P; Miller G; Dee Boersma P; Zhao R; Gilbert MTP; Yang H; Zhang D-X; Zhang GPenguins lost the ability to fly more than 60 million years ago, subsequently evolving a hyper-specialized marine body plan. Within the framework of a genome-scale, fossil-inclusive phylogeny, we identify key geological events that shaped penguin diversification and genomic signatures consistent with widespread refugia/recolonization during major climate oscillations. We further identify a suite of genes potentially underpinning adaptations related to thermoregulation, oxygenation, diving, vision, diet, immunity and body size, which might have facilitated their remarkable secondary transition to an aquatic ecology. Our analyses indicate that penguins and their sister group (Procellariiformes) have the lowest evolutionary rates yet detected in birds. Together, these findings help improve our understanding of how penguins have transitioned to the marine environment, successfully colonizing some of the most extreme environments on Earth.