Browsing by Author "Zhao F"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemComparison of Genotype Imputation for SNP Array and Low-Coverage Whole-Genome Sequencing Data(Frontiers Media S A, 2022-01-03) Deng T; Zhang P; Garrick D; Gao H; Wang L; Zhao F; Lingzhao FGenotype imputation is the term used to describe the process of inferring unobserved genotypes in a sample of individuals. It is a key step prior to a genome-wide association study (GWAS) or genomic prediction. The imputation accuracy will directly influence the results from subsequent analyses. In this simulation-based study, we investigate the accuracy of genotype imputation in relation to some factors characterizing SNP chip or low-coverage whole-genome sequencing (LCWGS) data. The factors included the imputation reference population size, the proportion of target markers /SNP density, the genetic relationship (distance) between the target population and the reference population, and the imputation method. Simulations of genotypes were based on coalescence theory accounting for the demographic history of pigs. A population of simulated founders diverged to produce four separate but related populations of descendants. The genomic data of 20,000 individuals were simulated for a 10-Mb chromosome fragment. Our results showed that the proportion of target markers or SNP density was the most critical factor affecting imputation accuracy under all imputation situations. Compared with Minimac4, Beagle5.1 reproduced higher-accuracy imputed data in most cases, more notably when imputing from the LCWGS data. Compared with SNP chip data, LCWGS provided more accurate genotype imputation. Our findings provided a relatively comprehensive insight into the accuracy of genotype imputation in a realistic population of domestic animals.
- ItemEstimates of genomic inbreeding and identification of candidate regions that differ between Chinese indigenous sheep breeds.(BioMed Central Ltd, 2021-08-05) Liu J; Shi L; Li Y; Chen L; Garrick D; Wang L; Zhao FBACKGROUND: A run of homozygosity (ROH) is a consecutive tract of homozygous genotypes in an individual that indicates it has inherited the same ancestral haplotype from both parents. Genomic inbreeding can be quantified based on ROH. Genomic regions enriched with ROH may be indicative of selection sweeps and are known as ROH islands. We carried out ROH analyses in five Chinese indigenous sheep breeds; Altay sheep (n = 50 individuals), Large-tailed Han sheep (n = 50), Hulun Buir sheep (n = 150), Short-tailed grassland sheep (n = 150), and Tibetan sheep (n = 50), using genotypes from an Ovine Infinium HD SNP BeadChip. RESULTS: A total of 18,288 ROH were identified. The average number of ROH per individual across the five sheep breeds ranged from 39 (Hulun Buir sheep) to 78 (Large-tailed Han sheep) and the average length of ROH ranged from 0.929 Mb (Hulun Buir sheep) to 2.544 Mb (Large-tailed Han sheep). The effective population size (Ne) of Altay sheep, Large-tailed Han sheep, Hulun Buir sheep, Short-tailed grassland sheep and Tibetan sheep were estimated to be 81, 78, 253, 238 and 70 five generations ago. The highest ROH-based inbreeding estimate (FROH) was 0.0808 in Large-tailed Han sheep, whereas the lowest FROH was 0.0148 in Hulun Buir sheep. Furthermore, the highest proportion of long ROH fragments (> 5 Mb) was observed in the Large-tailed Han sheep breed which indicated recent inbreeding. In total, 49 ROH islands (the top 0.1% of the SNPs most commonly observed in ROH) were identified in the five sheep breeds. Three ROH islands were common to all the five sheep breeds, and were located on OAR2: 12.2-12.3 Mb, OAR12: 78.4-79.1 Mb and OAR13: 53.0-53.6 Mb. Three breed-specific ROH islands were observed in Altay sheep (OAR15: 3.4-3.8 Mb), Large-tailed Han sheep (ORA17: 53.5-53.8 Mb) and Tibetan sheep (ORA5:19.8-20.2 Mb). Collectively, the ROH islands harbored 78 unique genes, including 19 genes that have been documented as having associations with tail types, adaptation, growth, body size, reproduction or immune response. CONCLUSION: Different ROH patterns were observed in five Chinese indigenous sheep breeds, which reflected their different population histories. Large-tailed Han sheep had the highest genomic inbreeding coefficients and the highest proportion of long ROH fragments indicating recent inbreeding. Candidate genes in ROH islands could be used to illustrate the genetic characteristics of these five sheep breeds. Our findings contribute to the understanding of genetic diversity and population demography, and help design and implement breeding and conservation strategies for Chinese sheep.
- ItemInteraction between Rumen Epithelial miRNAs-Microbiota-Metabolites in Response to Cold-Season Nutritional Stress in Tibetan Sheep.(MDPI (Basel, Switzerland), 2023-09-23) Lv W; Sha Y; Liu X; He Y; Hu J; Wang J; Li S; Guo X; Shao P; Zhao F; Li M; Freking BTibetan sheep are already well adapted to cold season nutrient stress on the Tibetan Plateau. Rumen, an important nutrient for metabolism and as an absorption organ in ruminants, plays a vital role in the cold stress adaptations of Tibetan sheep. Ruminal microbiota also plays an indispensable role in rumen function. In this study, combined multiomics data were utilized to comprehensively analyze the interaction mechanism between rumen epithelial miRNAs and microbiota and their metabolites in Tibetan sheep under nutrient stress in the cold season. A total of 949 miRNAs were identified in the rumen epithelium of both cold and warm seasons. A total of 62 differentially expressed (DE) miRNAs were screened using FC > 1.5 and p value < 0.01, and a total of 20,206 targeted genes were predicted by DE miRNAs. KEGG enrichment analysis revealed that DE miRNA-targeted genes were mainly enriched in axon guidance(ko04360), tight junction(ko04530), inflammatory mediator regulation of TRP channels(ko04750) and metabolism-related pathways. Correlation analysis revealed that rumen microbiota, rumen VFAs and DE miRNAs were all correlated. Further study revealed that the targeted genes of cold and warm season rumen epithelial DE miRNAs were coenriched with differential metabolites of microbiota in glycerophospholipid metabolism (ko00564), apoptosis (ko04210), inflammatory mediator regulation of TRP channels (ko04750), small cell lung cancer (ko05222), and choline metabolism in cancer (ko05231) pathways. There are several interactions between Tibetan sheep rumen epithelial miRNAs, rumen microbiota, and microbial metabolites, mainly through maintaining rumen epithelial barrier function and host homeostasis of choline and cholesterol, improving host immunity, and promoting energy metabolism pathways, thus enabling Tibetan sheep to effectively respond to cold season nutrient stress. The results also suggest that rumen microbiota have coevolved with their hosts to improve the adaptive capacity of Tibetan sheep to cold season nutrient stress, providing a new perspective for the study of cold season nutritional stress adaptation in Tibetan sheep.