Browsing by Author "Zhang G"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- ItemA Social Assessment Framework to Derive a Social Score for Green Material Selection: A Case Study from the Sri Lankan Cement Industry(MDPI (Basel, Switzerland), 2024-08-02) Fernando A; Siriwardana C; Gunasekara C; Law DW; Zhang G; Gamage JCPH; Caggiano AAssessing the sustainability of material-based products now encompasses social sustainability, a vital aspect often overlooked. Even though the existing frameworks provide a starting point, they do not often differentiate between the assessment criteria when making comparisons within one specific material category, which has made sustainability assessments more focused on environmental and economic aspects. This study addresses this critical gap by pioneering a social assessment framework curated to help practitioners to choose the most sustainable cement type out of the standard cement types used in the industry. Utilizing the Fuzzy Analytic Hierarchy Process (FAHP) and linear-scoring method, criteria weights were systematically assigned based on scoring by industry and academic experts. The findings highlight the importance of integrating social sustainability with environmental and economic factors in cement selection. Unlike traditional material selection, which primarily considers cost and performance, green material selection emphasizes the holistic impact of materials, including social factors. Variations in weightage decisions among experts highlight the influence of practical experience, research interests, and context. Functionality emerges as a crucial criterion. The ranking of cement types based on social scores places CEM II/B-M at the top, followed by CEM IV/A, CEM II/A-S, CEM II/A-V, CEM I, and CEM II/A-LL. The evolving nature of sustainability necessitates ongoing research to refine and expand existing frameworks for a more sustainable construction industry.
- ItemAuthor Correction: Dense sampling of bird diversity increases power of comparative genomics.(2021-04) Feng S; Stiller J; Deng Y; Armstrong J; Fang Q; Reeve AH; Xie D; Chen G; Guo C; Faircloth BC; Petersen B; Wang Z; Zhou Q; Diekhans M; Chen W; Andreu-Sánchez S; Margaryan A; Howard JT; Parent C; Pacheco G; Sinding M-HS; Puetz L; Cavill E; Ribeiro ÂM; Eckhart L; Fjeldså J; Hosner PA; Brumfield RT; Christidis L; Bertelsen MF; Sicheritz-Ponten T; Tietze DT; Robertson BC; Song G; Borgia G; Claramunt S; Lovette IJ; Cowen SJ; Njoroge P; Dumbacher JP; Ryder OA; Fuchs J; Bunce M; Burt DW; Cracraft J; Meng G; Hackett SJ; Ryan PG; Jønsson KA; Jamieson IG; da Fonseca RR; Braun EL; Houde P; Mirarab S; Suh A; Hansson B; Ponnikas S; Sigeman H; Stervander M; Frandsen PB; van der Zwan H; van der Sluis R; Visser C; Balakrishnan CN; Clark AG; Fitzpatrick JW; Bowman R; Chen N; Cloutier A; Sackton TB; Edwards SV; Foote DJ; Shakya SB; Sheldon FH; Vignal A; Soares AER; Shapiro B; González-Solís J; Ferrer-Obiol J; Rozas J; Riutort M; Tigano A; Friesen V; Dalén L; Urrutia AO; Székely T; Liu Y; Campana MG; Corvelo A; Fleischer RC; Rutherford KM; Gemmell NJ; Dussex N; Mouritsen H; Thiele N; Delmore K; Liedvogel M; Franke A; Hoeppner MP; Krone O; Fudickar AM; Milá B; Ketterson ED; Fidler AE; Friis G; Parody-Merino ÁM; Battley PF; Cox MP; Lima NCB; Prosdocimi F; Parchman TL; Schlinger BA; Loiselle BA; Blake JG; Lim HC; Day LB; Fuxjager MJ; Baldwin MW; Braun MJ; Wirthlin M; Dikow RB; Ryder TB; Camenisch G; Keller LF; DaCosta JM; Hauber ME; Louder MIM; Witt CC; McGuire JA; Mudge J; Megna LC; Carling MD; Wang B; Taylor SA; Del-Rio G; Aleixo A; Vasconcelos ATR; Mello CV; Weir JT; Haussler D; Li Q; Yang H; Wang J; Lei F; Rahbek C; Gilbert MTP; Graves GR; Jarvis ED; Paten B; Zhang GIn Supplementary Table 1 of this Article, 23 samples (B10K-DU-029-32, B10K-DU-029-33, B10K-DU-029-36 to B10K-DU-029-44, B10K-DU- 029-46, B10K-DU-029-47, B10K-DU-029-49 to B10K-DU-029-53, B10K-DU- 029-75 to B10K-DU-029-77, B10K-DU-029-80, and B10K-DU-030-03; styled in boldface in the revised table) were assigned to the incorrect institution. Supplementary Table 1 has been amended to reflect the correct source institution for these samples, and associated data (tissue, museum ID/source specimen ID, site, state/province, latitude, longitude, date collected and sex) have been updated accordingly. The original table is provided as Supplementary Information to this Amendment, and the original Article has been corrected online.
- ItemGenomic insights into the secondary aquatic transition of penguins(Springer Nature Limited, 2022-07-19) Cole TL; Zhou C; Fang M; Pan H; Ksepka DT; Fiddaman SR; Emerling CA; Thomas DB; Bi X; Fang Q; Ellegaard MR; Feng S; Smith AL; Heath TA; Tennyson AJD; Borboroglu PG; Wood JR; Hadden PW; Grosser S; Bost C-A; Cherel Y; Mattern T; Hart T; Sinding M-HS; Shepherd LD; Phillips RA; Quillfeldt P; Masello JF; Bouzat JL; Ryan PG; Thompson DR; Ellenberg U; Dann P; Miller G; Dee Boersma P; Zhao R; Gilbert MTP; Yang H; Zhang D-X; Zhang GPenguins lost the ability to fly more than 60 million years ago, subsequently evolving a hyper-specialized marine body plan. Within the framework of a genome-scale, fossil-inclusive phylogeny, we identify key geological events that shaped penguin diversification and genomic signatures consistent with widespread refugia/recolonization during major climate oscillations. We further identify a suite of genes potentially underpinning adaptations related to thermoregulation, oxygenation, diving, vision, diet, immunity and body size, which might have facilitated their remarkable secondary transition to an aquatic ecology. Our analyses indicate that penguins and their sister group (Procellariiformes) have the lowest evolutionary rates yet detected in birds. Together, these findings help improve our understanding of how penguins have transitioned to the marine environment, successfully colonizing some of the most extreme environments on Earth.
- ItemHigh-coverage genomes to elucidate the evolution of penguins(Oxford University Press and BGI, 2019-09-18) Pan H; Cole TL; Bi X; Fang M; Zhou C; Yang Z; Ksepka DT; Hart T; Bouzat JL; Argilla LS; Bertelsen MF; Boersma PD; Bost C-A; Cherel Y; Dann P; Fiddaman SR; Howard P; Labuschagne K; Mattern T; Miller G; Parker P; Phillips RA; Quillfeldt P; Ryan PG; Taylor H; Thompson DR; Young MJ; Ellegaard MR; Gilbert MTP; Sinding M-HS; Pacheco G; Shepherd LD; Tennyson AJD; Grosser S; Kay E; Nupen LJ; Ellenberg U; Houston DM; Reeve AH; Johnson K; Masello JF; Stracke T; McKinlay B; Borboroglu PG; Zhang D-X; Zhang GBACKGROUND: Penguins (Sphenisciformes) are a remarkable order of flightless wing-propelled diving seabirds distributed widely across the southern hemisphere. They share a volant common ancestor with Procellariiformes close to the Cretaceous-Paleogene boundary (66 million years ago) and subsequently lost the ability to fly but enhanced their diving capabilities. With ∼20 species among 6 genera, penguins range from the tropical Galápagos Islands to the oceanic temperate forests of New Zealand, the rocky coastlines of the sub-Antarctic islands, and the sea ice around Antarctica. To inhabit such diverse and extreme environments, penguins evolved many physiological and morphological adaptations. However, they are also highly sensitive to climate change. Therefore, penguins provide an exciting target system for understanding the evolutionary processes of speciation, adaptation, and demography. Genomic data are an emerging resource for addressing questions about such processes. RESULTS: Here we present a novel dataset of 19 high-coverage genomes that, together with 2 previously published genomes, encompass all extant penguin species. We also present a well-supported phylogeny to clarify the relationships among penguins. In contrast to recent studies, our results demonstrate that the genus Aptenodytes is basal and sister to all other extant penguin genera, providing intriguing new insights into the adaptation of penguins to Antarctica. As such, our dataset provides a novel resource for understanding the evolutionary history of penguins as a clade, as well as the fine-scale relationships of individual penguin lineages. Against this background, we introduce a major consortium of international scientists dedicated to studying these genomes. Moreover, we highlight emerging issues regarding ensuring legal and respectful indigenous consultation, particularly for genomic data originating from New Zealand Taonga species. CONCLUSIONS: We believe that our dataset and project will be important for understanding evolution, increasing cultural heritage and guiding the conservation of this iconic southern hemisphere species assemblage.
- ItemRapid Spread of Severe Fever with Thrombocytopenia Syndrome Virus by Parthenogenetic Asian Longhorned Ticks.(2022-02) Zhang X; Zhao C; Cheng C; Zhang G; Yu T; Lawrence K; Li H; Sun J; Yang Z; Ye L; Chu H; Wang Y; Han X; Jia Y; Fan S; Kanuka H; Tanaka T; Jenkins C; Gedye K; Chandra S; Price DC; Liu Q; Choi YK; Zhan X; Zhang Z; Zheng ASevere fever with thrombocytopenia syndrome virus (SFTSV) is spreading rapidly in Asia. This virus is transmitted by the Asian longhorned tick (Haemaphysalis longicornis), which has parthenogenetically and sexually reproducing populations. Parthenogenetic populations were found in ≥15 provinces in China and strongly correlated with the distribution of severe fever with thrombocytopenia syndrome cases. However, distribution of these cases was poorly correlated with the distribution of populations of bisexual ticks. Phylogeographic analysis suggested that the parthenogenetic population spread much faster than bisexual population because colonization is independent of sexual reproduction. A higher proportion of parthenogenetic ticks was collected from migratory birds captured at an SFTSV-endemic area, implicating the contribution to the long-range movement of these ticks in China. The SFTSV susceptibility of parthenogenetic females was similar to that of bisexual females under laboratory conditions. These results suggest that parthenogenetic Asian longhorned ticks, probably transported by migratory birds, play a major role in the rapid spread of SFTSV.