Browsing by Author "Zellmer GF"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
- ItemDeposits, character and timing of recent eruptions and gravitational collapses in Tatun Volcanic Group, Northern Taiwan: Hazard-related issues(ELSEVIER SCIENCE BV, 2010) Belousov A; Belousova M; Chen C-H; Zellmer GFTaipei City, with a population of around 8 million, as well as two nuclear power plants is located in close proximity to the Quaternary, dominantly andesitic Tatun Volcanic Group (TVG) of Northern Taiwan. We have investigated the stratigraphy of the youngest volcaniclastic deposits, as well as the morphology of lava flows and domes of the TVG in order to reconstruct the character and timing of the most recent eruptions and related hazardous events in the area. Our data indicate that recent eruptions of the group were dominated by long-term, voluminous extrusions of crystal-rich, very viscous lavas. These eruptions formed closely spaced monogenetic domes and lava flows. Based on morphological parameters of the lava flows (thicknesses 80–150 m, lengths up to 5.6 km, and volumes up to 0.6 km3), average rates of magma effusion ranged from 1 to 10 m3/s, eruption durations from 500 to 1800 days, and lava front speeds from 0.5 to 6 m/h. Explosive activity of TVG was diverse, ranging from weak phreatic to highly explosive (VEI 4) Plinian eruptions; vulcanian activity with deposition of lithic ashes was most common. Interaction of rising magma with ground water frequently occurred during the eruptions. This study presents the first radiocarbon dates of various volcaniclastic deposits of the TVG, which indicate that Cising, Siaoguanyin, and possibly Huangzuei volcanoes had magmatic eruptions in the period 13,000–23,000 years ago. In addition, Mt. Cising had a phreatic eruption 6000 years ago, and possibly an effusive eruption just before that. Gravitational collapses of volcanic edifices with volumes 0.01–0.1 km3 and H/L 0.16–0.25 were also common. They occurred on intersections with tectonic faults and may have been triggered by seismic activity. The youngest collapses occurred at Mt. Siaoguanyin (23,000 BP) and Mt. Cising (6000 BP). It is concluded that the TVG should be considered volcanically active. The results of this study provide a basis for volcanic hazard assessment and mitigation in the area.
- ItemEPMA maps unveil the actual chemical variations and crystallization sequence of pyroxenes and plagioclase solidified from a basaltic liquid at variable cooling rates(Elsevier B V, 2023-12-05) Gennaro E; Radica F; Iezzi G; Vetere F; Nazzari M; Zellmer GF; Scarlato P; Romano CCrystal-chemical variations of pyroxene (px) and plagioclase (plg) have been analysed by X-ray electron microprobe (EPMA) mapping to quantify their actual chemical dispersions. These phases were experimentally crystallised from a basaltic liquid (B100, MORB from Iceland) at cooling rates of 1, 7, 60 and 180 ◦C/h from 1300 ◦C down to 800 ◦C. Experiments were run at ambient conditions applying defined temperature paths mirroring characteristic cooling rates from innermost to outermost portions of metre- to centimetre-thick lavas, dikes and bombs emplaced under submarine to subaerial conditions. As the cooling rate increases from 1 to 180 ◦C/h, the run-products become progressively enriched in pyroxene and depleted in plagioclase, while spinel is invariably low (few area%) and glass is significant only at 180 ◦C/h. An increase of cooling rate generally leads to enrichment of Al2O3 and depletion of MgO in px, while the opposite behaviour is observed for plg; these trends are mirrored by calculated cations (apfu: atom per formula unit) and components. Average variations as a function of cooling rate are similar to those already observed through classical analysis performed by single point EPMA. However, the actual chemical distributions of CaO versus MgO, Al2O3 and FeOtot oxides unveil the presence of a wider range in pyroxene chemistry. In particular, one px (px-1, CaO-rich, diopsidic type) is present at all the applied cooling rates; a very low CaO-px (px-2, pigeonite or orthopyroxene type) is detected at 1 ◦C/h; and, finally, once more population of px (px-3, CaO-poor diopsidic type) appears at 60 and 180 ◦C/h. By contrast, plg analyses yield invariably identical compositions. Textural variations as a function of cooling rate and geo thermometric estimations indicate that px-1 crystallised at high-T (or low ΔT), while plg mainly grew in the residual melt produced by the saturation of px. If only textures were evaluated, this order of segregation would like remain unrecognised since px at low cooling rates is smaller than plg. The abundance of phases, their crystal chemical features, and their order of segregation can be regarded through a theoretical framework of a time temperature-transformation (TTT) diagram. The most significant chemical variations are displayed by MgO and Al2O3 for both px and plg, which faithfully capture the evolution of cooling conditions. The chemical compositions of px-1 is close to the thermodynamic equilibrium only at 1 ◦C/h. As the cooling rates increase, the px chemistry indicates disequilibrium conditions. Finally, this study shows that as ΔT/Δt increases, the most abundant px (px-1) and plg are forced towards compositions that become progressively closer to those of the parental liquid.
- ItemExploring intrusive processes through the crystal cargo of volcanic rocks: The case of lava flows from Taranaki volcano, New Zealand(Elsevier B V, 2024-11) D'Mello NG; Zellmer GF; Ubide T; Caulfield J; Usuki M; Iizuka Y; Kereszturi G; Procter JN; Stewart RB; Romano CThe present-day edifice of Taranaki volcano, New Zealand, is largely made up of lava flows extruded over approximately the last 8 kyr. The crystal cargo of plagioclase, pyroxene and amphibole in these lavas displays varied major, minor, and trace element zoning patterns, pointing to long and complex crystal growth histories. Crystal zoning patterns do not vary systematically between stratigraphic units, and multiple patterns are seen within the same sample over very short length scales. Intracrystalline elemental variations reveal mineral-melt interactions, which result in repeated resorption and recrystallisation in varied environments. Variable degrees of undercooling are evidenced by clinopyroxenes, with most crystals displaying sector zoning (ΔT < 50 K), while others only show concentric zoning, which suggests very low ΔT. The common occurrence of resorbed cores within the crystals and the prevalence of glomerocrysts indicate antecrystic and/or xenocrystic origins and crystal aggregation processes. We hypothesise that the repeated intrusion of melts into the crustal basement of Taranaki volcano has resulted in the formation of a heterogeneous subsolidus plutonic to supersolidus mushy (∼15–55 vol% crystals) system that interacts with intruding melts from the mantle. These interactions result in disaggregation of crystal clots from the plutonic intrusives and remobilization of the crystals through various sub-environments of small ephemeral mush pockets. Eruption-triggering injections of melt then pick up these crystals with varied growth histories to be extruded
- ItemInter- and intra-crystal quartz δ18O homogeneity at Okataina volcano, Aotearoa New Zealand: Implications for rhyolite genesis(Elsevier B V, Amsterdam, 2022-01) Sas M; Shane P; Kawasaki N; Sakamoto N; Zellmer GF; Yurimoto HThe sources and processes involved in the genesis of the voluminous rhyolitic magmas of cataclysmic caldera-forming eruptions, and the intervening lower-volume intra-caldera extrusions, have been subject to much debate. To better understand generation of high-volume and low-volume silicic eruptions within a single volcanic centre, and how they may differ, we examined ten volumetrically varied high-SiO2 rhyolite eruptions from the Okataina Volcanic Centre (OVC) in Aotearoa New Zealand. The OVC is one of the world's most recurrently active silicic volcanoes. In the last ~600 ky, the OVC was the focus of three known caldera-forming events and numerous intermittent dome-building and fissure eruption episodes, with rhyolitic eruption activity as recent as 1314 CE. To elucidate how mass contributions from the mantle and crust may have fluctuated over the lifespan of the OVC magmatic system, oxygen isotopic ratios (δ18O) of quartz in rhyolites were investigated for the first time at inter-crystal and intra-crystal scales. Quartz crystals from four eruption episodes (two caldera-forming events, Utu, ~557 ka, Rotoiti, ~45 ka, and two intra-caldera dome-building events, Rotoma, ~9.5 ka, and Kaharoa, ~0.7 ka) yielded intra-crystal δ18O isotopic homogeneity (±0.23‰, 2sd) based on secondary ion mass spectrometry (SIMS). These samples also display inter-crystal and inter-unit homogeneity within slightly lower precision (7.6 ± 0.5‰, 2sd). Whole-crystal quartz from the same four units, as well as six other units (two intra-caldera dome-building episodes, Okareka, ~21.8 ka, Whakatane, ~5.5 ka, three pre-Rotoiti extra-caldera domes, Round Hill, Haparangi, Kakapiko, and one immediately post-Rotoiti eruption, Earthquake Flat), were then examined using high-precision laser fluorination. Single crystals also yielded mostly homogenous ratios with average δ18O = 7.6 ± 0.5‰ (2sd), which is consistent with intra-crystal SIMS analyses, albeit for a larger set of samples. Stable and radiogenic isotope mixing models using the newly obtained δ18O ratios demonstrate that OVC rhyolites can be produced by ≥25% assimilation of a regional (Torlesse-like) metasedimentary endmember by a depleted mantle source with slightly variable amounts of subduction flux, and that any incorporation of hydrothermally altered material to the system is limited to <5% in caldera and intra-caldera eruptions. The δ18O records of the OVC are among the most homogenous currently known and indicate stable and consistent mantle and crustal contributions across the lifespan of the magmatic system, with assimilation largely occurring prior to segregation of rhyolitic melts within the silicic reservoir. This isotopic homogeneity may be due to a relatively high-volume and constant magma flux at the OVC, which contrasts to other rhyolitic caldera volcanoes with greater isotopic variability.
- ItemMushPEC: Correcting Post-entrapment Processes Affecting Melt Inclusions Hosted in Olivine Antecrysts(Frontiers Media S A, Switzerland, 2021-01-29) Brahm R; Zellmer GF; Kuritani T; Coulthard Jr. D; Nakagawa M; Sakamoto N; Yurimoto H; Sato E; Petrone CMOlivine-hosted melt inclusions (MIs) are widely used as a tool to study the early stages of magmatic evolution. There are a series of processes that affect MI compositions after trapping, including post-entrapment crystallization (PEC) of the host mineral at the MI boundaries, exsolution of volatile phases into a “shrinkage bubble” and diffusive exchange between a MI and its host. Classical correction schemes applied to olivine-hosted MIs include PEC correction through addition of olivine back to the melt until it reaches equilibrium with the host composition and “Fe-loss” correction due to Fe-Mg diffusive exchange. These corrections rely on the assumption that the original host composition is preserved. However, for many volcanic samples the crystal cargo is thought to be antecrystic, and the olivine composition may thus have been completely re-equilibrated during long crystal storage times. Here, we develop a novel MI correction scheme that is applicable when the original host crystal composition has not been preserved and the initial MI composition variability can be represented by simple fractional crystallization (FC). The new scheme allows correction of MI compositions in antecrystic hosts with long and varied temperature histories. The correction fits a set of MI compositions to modelled liquid lines of descent generated by FC. A MATLAB® script (called MushPEC) iterates FC simulations using the rhyolite-MELTS algorithm. In addition to obtaining the corrected MI compositions, the application of this methodology provides estimations of magmatic conditions during MI entrapment. A set of MIs hosted in olivine crystals of homogeneous composition (Fo77–78) from a basaltic tephra of Akita-Komagatake volcano was used to test the methodology. The tephra sample shows evidence of re-equilibration of the MIs to a narrow Mg# range equivalent to the carrier melt composition. The correction shows that olivine hosts were stored in the upper crust (c. 125 – 150 MPa) at undersaturated H2O contents of c. 1 – 2 wt% H2O)
- ItemShallow magmatic processes revealed by cryptic microantecrysts: a case study from the Taupo Volcanic Zone(Springer Nature, 2021-11-05) Lormand C; Zellmer GF; Sakamoto N; Ubide T; Kilgour G; Yurimoto H; Palmer A; Németh K; Iizuka Y; Moebis AArc magmas typically contain phenocrysts with complex zoning and diverse growth histories. Microlites highlight the same level of intracrystalline variations but require nanoscale resolution which is globally less available. The southern Taupo Volcanic Zone (TVZ), New Zealand, has produced a wide range of explosive eruptions yielding glassy microlite-bearing tephras. Major oxide analyses and textural information reveal that microlite rims are commonly out of equilibrium with the surrounding glass. We mapped microlites and microcrysts at submicron resolution for major and trace element distributions and observed three plagioclase textural patterns: (1) resorption and overgrowth, (2) oscillatory zoning, and (3) normal (sharp) zoning. Pyroxene textures are diverse: (1) resorption and overgrowth, (2) calcium-rich bands, (3) hollow textures, (4) oscillatory zoning, (5) sector zoning, (6) normal zoning and (7) reverse zoning. Microlite chemistry and textures inform processes operating during pre-eruptive magma ascent. They indicate a plumbing system periodically intruded by short-lived sub-aphyric dykes that entrain microantecrysts grown under diverse physico-chemical conditions and stored in rapidly cooled, previously intruded dykes. Changes in temperature gradients between the intrusion and the host rock throughout ascent and repeated magma injections lead to fluctuations in cooling rates and generate local heterogeneities illustrated by the microlite textures and rim compositions. Late-stage degassing occurs at water saturation, forming thin calcic microcryst rims through local partitioning effects. This detailed investigation of textures cryptic to conventional imaging shows that a significant proportion of the micrometre-sized crystal cargo of the TVZ is of antecrystic origin and may not be attributed to late-stage nucleation and growth at the onset of volcanic eruptions, as typically presumed.