Browsing by Author "Yuan F"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemHedgehogs as Amplifying Hosts of Severe Fever with Thrombocytopenia Syndrome Virus, China.(2022-12) Zhao C; Zhang X; Si X; Ye L; Lawrence K; Lu Y; Du C; Xu H; Yang Q; Xia Q; Yu G; Xu W; Yuan F; Hao J; Jiang J-F; Zheng ASevere fever with thrombocytopenia syndrome virus (SFTSV) is a tickborne bandavirus mainly transmitted by Haemaphysalis longicornis ticks in East Asia, mostly in rural areas. As of April 2022, the amplifying host involved in the natural transmission of SFTSV remained unidentified. Our epidemiologic field survey conducted in endemic areas in China showed that hedgehogs were widely distributed, had heavy tick infestations, and had high SFTSV seroprevalence and RNA prevalence. After experimental infection of Erinaceus amurensis and Atelerix albiventris hedgehogs with SFTSV, we detected robust but transitory viremias that lasted for 9-11 days. We completed the SFTSV transmission cycle between hedgehogs and nymph and adult H. longicornis ticks under laboratory conditions with 100% efficiency. Furthermore, naive H. longicornis ticks could be infected by SFTSV-positive ticks co-feeding on naive hedgehogs; we confirmed transstadial transmission of SFTSV. Our study suggests that the hedgehogs are a notable wildlife amplifying host of SFTSV in China.
- ItemHigh-pressure processing of bovine milk: Effects on the coagulation of protein and fat globules during dynamic in vitro gastric digestion(Elsevier B V, 2022-09-15) He X; Yang M; Yuan F; Singh H; Ye A; Sun QThe effect of high-pressure processing (HPP) on the digestion behavior of skim and whole bovine milks was investigated using a human gastric simulator. Both milks formed clots during gastric digestion. HPP treatment led to the formation of a coagulum with a fragmented and crumbled structure, compared with the coagulum formed from untreated milk. At pressures over 400 MPa, more intense pressure resulted in looser and more fragmented gastric clot structures. The weight of the dried clots and the moisture content in the clots of the skim milk treated at 600 MPa were significantly lower and higher than that of untreated skim milk, respectively. The looser and more fragmented gastric clot structures consequently led to faster hydrolysis of the proteins by pepsin during gastric digestion. The denaturation of the whey proteins induced by HPP may have also altered the resistance of α-lactalbumin and β-lactoglobulin in the HPP-treated milk samples to pepsin hydrolysis. This study provides insights into the differences among untreated skim milk, untreated whole milk and HPP-treated milk under in vitro gastric digestion conditions. The structure of the clots formed in the gastric environment affects their breakdown and consequently their emptying rate into the intestine.