Browsing by Author "Yu M"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemBiochar can Increase Chinese Cabbage (Brassica oleracea L.) Yield, Decrease Nitrogen and Phosphorus Leaching Losses in Intensive Vegetable Soil(Tech Science Press, 16/08/2021) Sun H; Jeyakumar P; Xiao H; Li X; Liu J; Yu M; Rana P; Shi WThere are few evidences on the effect of biochar on vegetable yield, nitrogen (N) and phosphorus (P) leaching losses under intensive vegetable production soil. The current field plot scale study evaluated responses of Chinese cabbage (Brassica oleracea L.) yield, N and P leaching losses using five N treatments of common N application rate according to local farmers’ practice (N100%), reducing 20% or 40% N fertilizer (N80% and N60%), and reducing 40% N fertilizer but incorporating 10 or 20 t/ha biochar (N60% + BC10 and N60% + BC20). Results showed that N80% and N60% decreased both the cabbage economic and leaf yields by 6.8%–36.3% and 27.4%–37.7%, respectively. Incorporation of biochar with reduced N fertilizer rates improved the cabbage yield, in particular the N60% + BC20 matched the yield that observed in N100% treatment. Enhanced N and P uptake capacities of cabbage shoot probably contributed the higher vegetable production under both biochar amendment schemes. Biochar application mitigated the NH+4-N and total P leaching losses by 20%–30% and 29%–32%, respectively, compared with their counterpart treatment N60%. Nevertheless, biochar exerted no influence on the NO–3-N leaching. In addition, soil organic matter content was recorded with 7.4%–28.7% higher following 10–20 t/ha bio-char application. In conclusion, biochar application can increase economic yield of cabbage via increasing N and P use efficiency, decrease N and P leaching losses, and improve soil quality in an intensive vegetable production system.
- ItemEvolutionary Game and Simulation of Green Housing Market Subject Behavior in China.(John Wiley and Sons, 2022-04-05) Qian Y; Yu M; Wang T; Yuan R; Feng Z; Zhao X; Fu HIn China, driven by the national "3060" double carbon targets (i.e., reaching peak carbon emissions by 2030 and carbon neutrality by 2060), green housing has become one of the major fields to reduce carbon emissions, facilitating the achievement of the double carbon targets. Promoting the growth of green housing is an important way for the real estate industry to achieve low-carbon transformation and improve the quality of housing. Meanwhile, the construction industry also can benefit from green housing to achieve its energy conservation and emission reduction targets. Therefore, it is critical to boost and maintain the sustainable growth of the green housing market in China. However, the literature has not focused attention on the market behavior of the green housing market in China. This study proposes a tripartite evolutionary game model to investigate the subject behavior of the green housing market in China. This model consists of three major subjects in a green housing market: developers, consumers, and governments. Based on this model, this study analyzes the stability of the strategy options for each stakeholder and identifies the stable conditions of strategy portfolios to reach the equilibrium points of the game system. The validity of the proposed tripartite evolutionary game model is tested through the simulation of the impacts from various factors on system evolution. According to the impacts of factors and the stable conditions of strategies, this paper puts forward relevant policy suggestions for the healthy and sustainable growth of China's green housing market.
- ItemLong-term survival of an urban fruit bat seropositive for Ebola and Lagos bat viruses(Public Library of Science, 2010) Hayman DTS; Emmerich P; Yu M; Wang L-F; Suu-Ire R; Fooks AR; Cunningham AA; Wood JLNEbolaviruses (EBOV) (family Filoviridae) cause viral hemorrhagic fevers in humans and non-human primates when they spill over from their wildlife reservoir hosts with case fatality rates of up to 90%. Fruit bats may act as reservoirs of the Filoviridae. The migratory fruit bat, Eidolon helvum, is common across sub-Saharan Africa and lives in large colonies, often situated in cities. We screened sera from 262 E. helvum using indirect fluorescent tests for antibodies against EBOV subtype Zaire. We detected a seropositive bat from Accra, Ghana, and confirmed this using western blot analysis. The bat was also seropositive for Lagos bat virus, a Lyssavirus, by virus neutralization test. The bat was fitted with a radio transmitter and was last detected in Accra 13 months after release post-sampling, demonstrating long-term survival. Antibodies to filoviruses have not been previously demonstrated in E. helvum. Radio-telemetry data demonstrates long-term survival of an individual bat following exposure to viruses of families that can be highly pathogenic to other mammal species. Because E. helvum typically lives in large urban colonies and is a source of bushmeat in some regions, further studies should determine if this species forms a reservoir for EBOV from which spillover infections into the human population may occur.
- ItemNovel, potentially zoonotic paramyxoviruses from the African straw-colored fruit bat Eidolon helvum(American Society for Microbiology, 2013) Baker KS; Todd S; Marsh GA; Crameri G; Barr J; Kamins AO; Peel AJ; Yu M; Hayman DTS; Nadjm B; Mtove G; Amos B; Reyburn H; Nyarko E; Suu-Ire R; Murcia PR; Cunningham AA; Wood JLN; Wang L-FBats carry a variety of paramyxoviruses that impact human and domestic animal health when spillover occurs. Recent studies have shown a great diversity of paramyxoviruses in an urban-roosting population of straw-colored fruit bats in Ghana. Here, we investigate this further through virus isolation and describe two novel rubulaviruses: Achimota virus 1 (AchPV1) and Achimota virus 2 (AchPV2). The viruses form a phylogenetic cluster with each other and other bat-derived rubulaviruses, such as Tuhoko viruses, Menangle virus, and Tioman virus. We developed AchPV1- and AchPV2-specific serological assays and found evidence of infection with both viruses in Eidolon helvum across sub-Saharan Africa and on islands in the Gulf of Guinea. Longitudinal sampling of E. helvum indicates virus persistence within fruit bat populations and suggests spread of AchPVs via horizontal transmission. We also detected possible serological evidence of human infection with AchPV2 in Ghana and Tanzania. It is likely that clinically significant zoonotic spillover of chiropteran paramyxoviruses could be missed throughout much of Africa where health surveillance and diagnostics are poor and comorbidities, such as infection with HIV or Plasmodium sp., are common.