Browsing by Author "Yu J"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemAssessment of clinical feasibility:offline adaptive radiotherapy for lung cancer utilizing kV iCBCT and UNet++ based deep learning model.(Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine, 2024-11-29) Zeng H; Chen Q; E X; Feng Y; Lv M; Zeng S; Shen W; Guan W; Zhang Y; Zhao R; Wang S; Yu JBackground Lung cancer poses a significant global health challenge. Adaptive radiotherapy (ART) addresses uncertainties due to lung tumor dynamics. We aimed to investigate a comprehensively and systematically validated offline ART regimen with high clinical feasibility for lung cancer. Methods This study enrolled 102 lung cancer patients, who underwent kV iterative cone-beam computed tomography (iCBCT). Data collection included iCBCT and planning CT (pCT) scans. Among these, data from 70 patients were employed for training the UNet++ based deep learning model, while 15 patients were allocated for testing the model. The model transformed iCBCT into adaptive CT (aCT). Clinical radiotherapy feasibility was verified in 17 patients. The dosimetric evaluation encompassed GTV, organs at risk (OARs), and monitor units (MU), while delivery accuracy was validated using ArcCHECK and thermoluminescent dosimeter (TLD) detectors. Results The UNet++ based deep learning model substantially improved image quality, reducing mean absolute error (MAE) by 70.05%, increasing peak signal-to-noise ratio (PSNR) by 17.97%, structural similarity (SSIM) by 7.41%, and the Hounsfield Units (HU) of aCT approaching a closer proximity to pCT compared to kV iCBCT. There were no significant differences observed in the dosimetric parameters of GTV and OARs between the aCT and pCT plans, confirming the accuracy of the dose maps in ART plans. Similarly, MU manifested no notable disparities, underscoring the consistency in treatment efficiency. Gamma passing rates for intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) plans derived from aCT and pCT exceeded 98%, while the deviations in TLD measurements (within 2% to 7%) also exhibited no significant differences, thus corroborating the precision of dose delivery. Conclusion An offline ART regimen utilizing kV iCBCT and UNet++ based deep learning model is clinically feasible for lung cancer treatment. This approach provides enhanced image quality, comparable treatment plans to pCT, and precise dose delivery.
- ItemHarvesting Wisdom on Social Media for Business Decision Making(HICSS, 2022-01-01) Yu J; Taskin N; Pauleen DJ; Jafarzadeh H; Bui TXThe proliferation of social media provides significant opportunities for organizations to obtain wisdom of the crowds (WOC)-type data for decision making. However, critical challenges associated with collecting such data exist. For example, the openness of social media tends to increase the possibility of social influence, which may diminish group diversity, one of the conditions of WOC. In this research-in-progress paper, a new social media data analytics framework is proposed. It is equipped with well-designed mechanisms (e.g., using different discussion processes to overcome social influence issues and boost social learning) to generate data and employs state-of-the-art big data technologies, e.g., Amazon EMR, for data processing and storage. Design science research methodology is used to develop the framework. This paper contributes to the WOC and social media adoption literature by providing a practical approach for organizations to effectively generate WOC-type data from social media to support their decision making.
- ItemIntegrative analysis identifies two molecular and clinical subsets in Luminal B breast cancer(Elsevier Inc, 2023-09-15) Wang H; Liu B; Long J; Yu J; Ji X; Li J; Zhu N; Zhuang X; Li L; Chen Y; Liu Z; Wang S; Zhao SComprehensive multiplatform analysis of Luminal B breast cancer (LBBC) specimens identifies two molecularly distinct, clinically relevant subtypes: Cluster A associated with cell cycle and metabolic signaling and Cluster B with predominant epithelial mesenchymal transition (EMT) and immune response pathways. Whole-exome sequencing identified significantly mutated genes including TP53, PIK3CA, ERBB2, and GATA3 with recurrent somatic mutations. Alterations in DNA methylation or transcriptomic regulation in genes (FN1, ESR1, CCND1, and YAP1) result in tumor microenvironment reprogramming. Integrated analysis revealed enriched biological pathways and unexplored druggable targets (cancer-testis antigens, metabolic enzymes, kinases, and transcription regulators). A systematic comparison between mRNA and protein displayed emerging expression patterns of key therapeutic targets (CD274, YAP1, AKT1, and CDH1). A potential ceRNA network was developed with a significantly different prognosis between the two subtypes. This integrated analysis reveals a complex molecular landscape of LBBC and provides the utility of targets and signaling pathways for precision medicine.
- ItemInvestigating the Determinants of Big Data Analytics Adoption in Decision Making: An Empirical Study in New Zealand, China, and Vietnam(Association for Information Systems, 2022-06-28) Yu J; Taskin N; Nguyen CP; Li J; Pauleen DJBackground: As a breakthrough technology, big data provides an opportunity for organizations to acquire business value and enhance competitiveness. Many companies have listed big data analytics (BDA) as one of their top priorities. However, research shows that managers are still reluctant to change their work patterns to utilize this new technology. In addition, the empirical evidence on what determines their adoption of BDA in management decision making is still rare. Method: To more broadly understand the determinants affecting managers’ actual use of BDA in decision making, a survey was conducted on a sample of 363 respondents from New Zealand, China, and Vietnam who work in different managerial roles. The dual process theory, the technology–organization–environment framework, and the key associated demographic characteristics are integrated to form the theoretical foundation to study the internal and external factors influencing the adoption. Results: The findings illustrate that the common essential factors across countries linking BDA in decision making are technology readiness, data quality, managers’ and organizational knowledge related to BDA, and organizational expectations. The factors that are more situation-dependent and evident in one or two countries’ results are managers’ predilection toward valuing intuition and experience over analytics and organizational size. Conclusion: The findings enrich the current literature and provide implications for practitioners on how they can improve the adoption process of this new technology.