Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
Repository logo
    Info Pages
    Content PolicyCopyright & Access InfoDepositing to MRODeposit LicenseDeposit License SummaryFile FormatsTheses FAQDoctoral Thesis Deposit
  • Communities & Collections
  • All of MRO
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Xue J"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Comparative study on the rheological properties of myofibrillar proteins from different kinds of meat
    (Elsevier Ltd, 2022-01) Wang H; Yang Z; Yang H; Xue J; Li Y; Wang S; Ge L; Shen Q; Zhang M
    In this study, the gel properties of myofibrillar proteins (MPs) from four meat sources (fish, beef, sheep, and pork) were compared. Oscillatory rheology measurements including temperature sweep, frequency sweep, and strain sweep were conducted to characterise the small and large deformation rheological properties of the MPs. In addition, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and scanning electron microscopy (SEM) were used to evaluate differences in the molecular weight distribution as well as the microstructures in gel among different MPs. Frequency sweep measurements showed that all MP gels were weak gels. MPs extracted from pork exhibited the highest gel strength and most compact gel structure, whereas those from fish exhibited the lowest gel strength and loosest gel structure. In addition, the MP extracted from pork (PSM) had the highest content of myosin heavy chain (MHC) and actin. In conclusion, the MPs extracted from fish source and mammalian sources varied significantly in terms of rheological properties and microstructural characteristics. These results provided useful information for developing mixed gel products with different gel strengths.
  • Loading...
    Thumbnail Image
    Item
    Monoclonal antibodies indicate low-abundance links between heteroxylan and other glycans of plant cell walls
    (Springer Verlag, 25/07/2015) Cornuault VRG; Buffetto F; Rydahl MG; Marcus SE; Torode TA; Xue J; Crepeau MJ; Faria-Blanc N; Willats WGT; Dupree P; Ralet MC; Knox JP
    Plant cell walls are complex composites of structurally distinct glycans that are poorly understood in terms of both in muro inter-linkages and developmental functions. Monoclonal antibodies (MAbs) are versatile tools that can detect cell wall glycans with high sensitivity through the specific recognition of oligosaccharide structures. The isolation of two novel MAbs, LM27 and LM28, directed to heteroxylan, subsequent to immunisation with a potato cell wall fraction enriched in rhamnogalacturonan-I (RG-I) oligosaccharides, is described. LM27 binds strongly to heteroxylan preparations from grass cell walls and LM28 binds to a glucuronosyl-containing epitope widely present in heteroxylans. Evidence is presented suggesting that in potato tuber cell walls, some glucuronoxylan may be linked to pectic macromolecules. Evidence is also presented that suggests in oat spelt xylan both the LM27 and LM28 epitopes are linked to arabinogalactan-proteins as tracked by the LM2 arabinogalactan-protein epitope. This work extends knowledge of the potential occurrence of inter-glycan links within plant cell walls and describes molecular tools for the further analysis of such links.

Copyright © Massey University  |  DSpace software copyright © 2002-2025 LYRASIS

  • Contact Us
  • Copyright Take Down Request
  • Massey University Privacy Statement
  • Cookie settings