Browsing by Author "Xu C"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemA Statistical Model for Earthquake And/Or Rainfall Triggered Landslides(Frontiers Media S.A., 2021-02-04) Frigerio Porta G; Bebbington M; Xiao X; Jones G; Xu CNatural hazards can be initiated by different types of triggering events. For landslides, the triggering events are predominantly earthquakes and rainfall. However, risk analysis commonly focuses on a single mechanism, without considering possible interactions between the primary triggering events. Spatial modeling of landslide susceptibility (suppressing temporal dependence), or tailoring models to specific areas and events are not sufficient to understand the risk produced by interacting causes. More elaborate models with interactions, capable of capturing direct or indirect triggering of secondary hazards, are required. By discretising space, we create a daily-spatio-temporal hazard model to evaluate the relative and combined effects on landslide triggering due to earthquakes and rainfall. A case study on the Italian region of Emilia-Romagna is presented, which suggests these triggering effects are best modeled as additive. This paper demonstrates how point processes can be used to model the triggering influence of multiple factors in a large real dataset collected from various sources.
- ItemFunctional response and prey stage preference of Neoseiulus barkeri on Trasonemus confuses(Systematic and Applied Acarology Society London, 23/11/2018) Li L; Jiao R; Lichen Y; He XZ; He L; Xu C; Zhang L; Liu J
- ItemTemperature‑dependent development and reproduction of Tarsonemus confusus (Acari: Tarsonemidae): an important pest mite of horticulture(Springer, 17/11/2022) Li L; Yu L; He L; He XZ; Jiao R; Xu CThe tarsonemid mite Tarsonemus confusus Ewing has become an economically important pest in orchards in China. This study investigated the temperature-dependent development and reproduction of T. confusus at 15, 20, 25, 30, 33 and 35 °C. Eggs failed to hatch at 35 °C. When temperature increased from 15 to 30 °C, the developmental rate of eggs, larvae and quiescent larvae and that from egg to adulthood of both sexes significantly increased, and the time period required by females to commence oviposition significantly decreased. The lower temperature threshold (T0) for the development of eggs, larvae and quiescent larvae was between 9.3 and 12.0 °C and both sexes required about 60 degree days (DD) to complete a life cycle. Females were expected to start oviposition at 12.9 °C. The number of eggs laid, the number of female offspring produced and the egg hatch rate were significantly higher at 20, 25 and 30 °C than at 15 and 33 °C. Increasing temperature shortened the longevity of both sexes but increased the intrinsic rate of increase (rm) and finite capacity for increase (λ) with significantly shorter generation time (T) and doubling time (DT) within a temperature range of 15-30 °C. The net reproductive rate (R0) was highest at 25 °C. Results of this study may improve our knowledge of fundamental biology and ecology in genus Tarsonemus in general and in T. confusus in particular. Based on the local climate conditions, the applications of these results in predicting the seasonal population dynamics of T. confusus and timing the pest management are discussed.