Browsing by Author "Williams JH"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemApproaching the challenge of multi-phase, multi-hazard volcanic impact assessment through the lens of systemic risk: application to Taranaki Mounga(Springer Nature, 2024-08-01) Weir AM; Wilson TM; Bebbington MS; Beaven S; Gordon T; Campbell-Smart C; Mead S; Williams JH; Fairclough REffective volcanic impact and risk assessment underpins effective volcanic disaster risk management. Yet contemporary volcanic risk assessments face a number of challenges, including delineating hazard and impact sequences, and identifying and quantifying systemic risks. A more holistic approach to impact assessment is required, which incorporates the complex, multi-hazard nature of volcanic eruptions and the dynamic nature of vulnerability before, during and after a volcanic event. Addressing this need requires a multidisciplinary, integrated approach, involving scientists and stakeholders to co-develop decision-support tools that are scientifically credible and operationally relevant to provide a foundation for robust, evidence-based risk reduction decisions. This study presents a dynamic, longitudinal impact assessment framework for multi-phase, multi-hazard volcanic events and applies the framework to interdependent critical infrastructure networks in the Taranaki region of Aotearoa New Zealand, where Taranaki Mounga volcano has a high likelihood of producing a multi-phase explosive eruption within the next 50 years. In the framework, multi-phase scenarios temporally alternate multi-hazard footprints with risk reduction opportunities. Thus, direct and cascading impacts and any risk management actions carry through to the next phase of activity. The framework forms a testbed for more targeted mitigation and response planning and allows the investigation of optimal intervention timing for mitigation strategies during an evolving eruption. Using ‘risk management’ scenarios, we find the timing of mitigation intervention to be crucial in reducing disaster losses associated with volcanic activity. This is particularly apparent in indirect, systemic losses that cascade from direct damage to infrastructure assets. This novel, dynamic impact assessment approach addresses the increasing end-user need for impact-based decision-support tools that inform robust response and resilience planning.
- ItemQuantifying systemic vulnerability of interdependent critical infrastructure networks: A case study for volcanic hazards(Elsevier Ltd., 2024-11-23) Weir AM; Wilson TM; Bebbington MS; Campbell-Smart C; Williams JH; Fairclough RInfrastructure networks are vital for the communities and industries that rely on their continued operation. Disasters stress these complex networks and can provoke systemic disruptions that extend far beyond the spatial footprint of hazards. An enduring challenge for assessing infrastructure networks within disaster impact assessment frameworks has been to adequately quantify the high spatial interdependence of these networks, and to consider risk management interventions through time. This is of particular importance for volcanic eruptions, which can produce multiple hazards over highly variable spatiotemporal extents. In this study, we present a methodology for the quantification of systemic vulnerability of infrastructure networks, which can be coupled with physical vulnerability models for the purpose of impact assessment. The two-part methodology first quantifies the haard-agnostic criticality of infrastructural components, inclusive of interdependencies, and then incorporates representative hazard spatial footprints to derive the systemic vulnerability. We demonstrate this methodology using the case study of volcanic eruptions from Taranaki Mounga volcano, Aotearoa New Zealand, where there are many industrial sites of national importance, and a high likelihood of a complex multi-hazard volcanic eruption. We find a considerable increase in the systemic vulnerability of electricity and natural gas network components after incorporating infrastructure interdependencies, and a further increase in the systemic vulnerability of these critical components when cross-referenced with potential volcanic hazard spatial extent. The methodology of this study can be applied to other areas of interest in both its hazard-agnostic or hazard-dependent form, and the systemic vulnerability quantification should be incorporated into impact assessment frameworks.
- ItemRapid remote volcanic ashfall impact assessment for the 2022 eruption of Hunga volcano, Tonga: a bespoke approach and lessons identified(Springer Nature, 2024-10-28) Weir AM; Williams JH; Wilson TM; Hayes JL; Stewart C; Leonard GS; Magill C; Jenkins SF; Williams S; Craig HM; Kula T; Fraser S; Pomonis A; Gunasekera R; Daniell JE; Coultas EWhen disasters occur, rapid impact assessments are required to prioritise response actions, support in-country efforts and inform the mobilisation of aid. The 15 January 2022 eruption of Hunga volcano, Tonga, and the resulting atmospheric shockwave, ashfall, underwater mass disturbance and tsunami, caused substantial impacts across the Kingdom of Tonga. Volcanic impacts on the scale observed after the eruption are rare, necessitating a reliance on international advice and assistance. The situation was complicated by the loss of Tonga’s international submarine fibreoptic cable (causing a complete loss of communications for approximately 20 days) along with border closures due to the COVID-19 pandemic. A need emerged for a rapid remote volcanic impact assessment and provision of specialist advice to help inform the response of international partners. Here we present a novel methodology for conducting rapid remote volcanic ashfall impact assessments, conducted over a 10-day period following the eruption. We used three different hazard models for ashfall thickness across the main island of Tongatapu and available asset information and vulnerability functions for buildings, agriculture, electricity networks, water supply and roads, to provide initial estimates of losses due to ashfall from the 15 January eruption. For buildings, we estimated losses both as total losses and as percentages of the total replacement cost of buildings on Tongatapu. For agriculture, we made probabilistic estimates of production losses for three different crop classes. For ashfall clean-up, we estimated ranges of ashfall volumes requiring clean-up from road surfaces and roofs. For water supply, electricity networks and roads, our analysis was limited to assessing the exposure of important assets to ashfall, as we had insufficient information on system configurations to take the analysis further. Key constraints on our analysis were the limited nature of critical infrastructure asset inventories and the lack of volcanic vulnerability models for tropical regions including Pacific Island nations. Key steps towards iteratively improving rapid remote impact assessments will include developing vulnerability functions for tropical environments as well as ground-truthing estimated losses from remote approaches against in-person impact assessment campaigns.