Browsing by Author "Waterland MR"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
- ItemBone quality changes as measured by Raman and FTIR spectroscopy in primiparous cows with humeral fracture from New Zealand.(2023) Wehrle-Martinez A; Waterland MR; Naffa R; Lawrence K; Back PJ; Rogers CW; Dittmer KThe occurrence of spontaneous humeral fractures in primiparous dairy cows from New Zealand prompted the study of bone material from affected cows to further characterize this condition and to outline a likely pathogenesis. Previous studies indicate that these cows developed osteoporosis due to periods of suboptimal bone formation followed by increased bone resorption during the period of lactation complicated by copper deficiency. We hypothesized that there are significant differences in the chemical composition/bone quality in bones from cows with spontaneous humeral fracture compared to cows without humeral fractures. In this study, Raman and Fourier transform infrared spectroscopy band ratios were, for the first time, measured, calculated, and compared in bone samples from 67 primiparous dairy cows that suffered a spontaneous fracture of the humerus and 14 age-matched post-calving cows without humeral fractures. Affected bone showed a significantly reduced mineral/matrix ratio, increased bone remodeling, newer bone tissue with lower mineralization and, lower carbonate substitution, and reduced crystallinity. As such, is likely that these have detrimentally impacted bone quality and strength in affected cows.
- ItemControlled Hydrolysis of TiO2 from HCl Digestion Liquors of Ilmenite(American Chemical Society, 2022-05-18) Haverkamp RG; Wallwork KS; Waterland MR; Gu Q; Kimpton JATraditionally, industrial scale production of the TiO2 pigment is achieved by hydrolysis from H2SO4 solution or by hydrolysis of TiCl4. However, the H2SO4 route produces FeSO4 waste, which is problematic, and the TiCl4 route requires a high grade rutile feedstock or chemically upgraded ilmenite (FeTiO3). Here, we investigate a direct route from ilmenite to TiO2 using aqueous HCl. New Zealand ilmenite digested in 35 wt % HCl to achieve a solution containing typically 1.18 mol kg-1 Fe(aq)2+ and 1.14 mol kg-1 Ti(aq)4+ was hydrolyzed under reflux, after seed preparation in water, or with phosphoric or citric acid. The structure of the seed was determined by Raman spectroscopy and X-ray powder diffraction using pair distribution function analysis, the latter enabling the identification of short-range order in poorly crystalline materials. TiO2 hydrate was precipitated from HCl in either the anatase or the rutile structure. Unlike from H2SO4, the natural structure formed without the use of structure determining agents is rutile. However, seed preparation using 0.4 mol H3PO4 per mole of Ti (resulting in 0.35 wt% H3PO4 in the hydrate) results in anatase hydrate formation. Sodium citrate or citric acid addition also seed anatase hydrate. The mechanism for polymorph control may be kinetic rather than a structural template or surface adsorption. This process has the potential to be used for the commercial scale production of the TiO2 pigment. Anatase hydrate has the advantage that traces of iron may be more readily removed by washing than from rutile precipitate, making the HCl process from ilmenite feasible for pigment grade material.
- ItemGelatin and Collagen from Sheepskin.(MDPI (Basel, Switzerland), 2024-05-31) Matinong AME; Pickering KL; Waterland MR; Chisti Y; Haverkamp RG; Yu L; Popa MAbattoirs dispose of sheepskins as solid waste due to low price and poor demand for sheepskin leather. In principle, as an alternative to being disposed of in landfill, sheepskins can serve as a source of the protein collagen or the hydrolysis product, gelatin. In this research, sheepskins collected from abattoirs were used as a source of collagen. Three extraction methods were compared: acid extraction, acid with enzymes, and alkali extraction. The extracted material was characterized using scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR), small angle X-ray scattering (SAXS), and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The collagen and gelatin extraction yield ranged from 3.1% to 4.8% with the product purity determined by hydroxyproline, ranging from 7.8% for the alkali process to 59% and 68% for the acid and acid-enzyme processes. SDS PAGE showed that the acid process produced fragments with molecular weights in the range 100 to >250 kDa, while acid-enzyme resulted in smaller fragments, below 30 kDa. The FTIR region of the amide I band at 1800-1550 cm-1, which was used as an indicator of the collagen and gelatin content, showed that the gelatin dominated in the acid extracts, and the alkaline extract contained a large portion of keratin. SAXS was found to be a sensitive method for showing the presence of intact collagen fibrils in materials from all of the extraction methods, albeit at low concentrations. Herein, sheepskin is shown to be a useful source for collagen-gelatin material of varying molecular weights.
- ItemHalocyclopropenium-Halide Halogen-Bonded Ion Pairs and Their Hydrogen-Bonded Halide Solvates(Wiley-VHCA AG, 2023-01-19) Abdelbassit MS; Curnow OJ; Waterland MRA series of salts with a diaminohalocyclopropenium cation and halide anion [C3(NiPr2)2X]X (X=Cl ([1]Cl) or Br ([2]Br) were isolated with a variety of solvates and, in one case, as a co-crystal with hydronium chloride. In particular, the initial synthesis of [1]Cl formed a co-crystal with hydronium and with CH2Cl2 solvate ([1]2[OH3Cl3] ⋅ CH2Cl2) upon isolation from acetone/CH2Cl2. Recrystallization of this from chloroform gave a dichloroform adduct [1]Cl ⋅ 2CHCl3, whereas treatment with ICl formed an octahalide cluster [1]2I4Cl4. The bromine salt [2]Br ⋅ C2H4Br2 was prepared by treatment of [1]Cl with dibromoethane and was isolated as a solvate. The hydronium cation was found as part of a hydronium trichloride cluster [OH3Cl3]2− and this, along with a partially-deuterated analogue of [OHD2Cl3]2− and [OD3Cl3]2−, was studied computationally and by mid- and far-infrared spectroscopy. Significant halogen bonds were found between 1+ or 2+ and chloride or bromide, respectively. On the other hand, the distance to the octahalide [I4Cl4]2− is too long for a halogen bond. Hydrogen bonding from the halides to the halomethane solvates is also significantly stronger than to the cation isopropyl groups. The geometries formed at the halide ions with respect to the halogen bond and strong hydrogen bonds are pyramidal with approximately orthogonal angles.
- ItemInfrared spectroscopy of serum fails to identify early biomarker changes in an equine model of traumatic osteoarthritis(Elsevier Ltd on behalf of Osteoarthritis Research Society International (OARSI), 2022-12) Panizzi L; Vignes M; Dittmer KE; Waterland MR; Rogers CW; Sano H; McIlwraith CW; Pemberton S; Owen M; Riley CBOBJECTIVE: to determine the accuracy of infrared (IR)-based serum biomarker profiling to differentiate horses with early inflammatory changes associated with a traumatically induced model of equine carpal osteoarthritis (OA) from controls. METHOD: unilateral carpal OA was induced in 9 of 17 healthy Thoroughbred fillies, while the remainder served as sham operated controls. Serum samples were obtained before induction of OA (Day 0) and weekly thereafter until Day 63 from both groups. Films of dried serum were created, and IR absorbance spectra acquired. Following pre-processing, partial least squares discriminant analysis (PLSDA) and principal component analysis (PCA) were used to assess group and time differences and generate predictive models for wavenumber ranges 1300-1800 cm-1 and 2600-3700 cm-1. RESULTS: the overall correct classification rate when classifying samples by group (OA or Sham) was 52.7% (s.d. = 12.8%), while it was 94.0% (s.d. = 1.4%) by sampling Day. The correct classification results by group-sampling Day combinations with pre-intervention serum (Day 0) was 50.5% (s.d. = 21.7%). CONCLUSION: with the current approach IR spectroscopic analysis could not differentiate serum of horses with induced carpal OA from that of controls. The high classification rate obtained by Day of sampling may reflect the effect of exercise on the biomarker profile. A longer study period (advanced disease) or naturally occurring disease may provide further information on the suitability of this technique in horses.
- ItemInfrared Spectroscopy of Synovial Fluid Shows Accuracy as an Early Biomarker in an Equine Model of Traumatic Osteoarthritis(MDPI (Basel, Switzerland), 2024-03-22) Panizzi L; Vignes M; Dittmer KE; Waterland MR; Rogers CW; Sano H; McIlwraith CW; Riley CB; Kaneps AJOsteoarthritis is a leading cause of lameness and joint disease in horses. A simple, economical, and accurate diagnostic test is required for routine screening for OA. This study aimed to evaluate infrared (IR)-based synovial fluid biomarker profiling to detect early changes associated with a traumatically induced model of equine carpal osteoarthritis (OA). Unilateral carpal OA was induced arthroscopically in 9 of 17 healthy thoroughbred fillies; the remainder served as Sham-operated controls. The median age of both groups was 2 years. Synovial fluid (SF) was obtained before surgical induction of OA (Day 0) and weekly until Day 63. IR absorbance spectra were acquired from dried SF films. Following spectral pre-processing, predictive models using random forests were used to differentiate OA, Sham, and Control samples. The accuracy for distinguishing between OA and any other joint group was 80%. The classification accuracy by sampling day was 87%. For paired classification tasks, the accuracies by joint were 75% for OA vs. OA Control and 70% for OA vs. Sham. The accuracy for separating horses by group (OA vs. Sham) was 68%. In conclusion, SF IR spectroscopy accurately discriminates traumatically induced OA joints from controls.
- ItemOptical Detection of CoV-SARS-2 Viral Proteins to Sub-Picomolar Concentrations(American Chemical Society, 2021-03-09) Stanborough T; Given FM; Koch B; Sheen CR; Stowers-Hull AB; Waterland MR; Crittenden DLThe emergence of a new strain of coronavirus in late 2019, SARS-CoV-2, led to a global pandemic in 2020. This may have been preventable if large scale, rapid diagnosis of active cases had been possible, and this has highlighted the need for more effective and efficient ways of detecting and managing viral infections. In this work, we investigate three different optical techniques for quantifying the binding of recombinant SARS-CoV-2 spike protein to surface-immobilized oligonucleotide aptamers. Biolayer interferometry is a relatively cheap, robust, and rapid method that only requires very small sample volumes. However, its detection limit of 250 nM means that it is not sensitive enough to detect antigen proteins at physiologically relevant levels (sub-pM). Surface plasmon resonance is a more sensitive technique but requires larger sample volumes, takes longer, requires more expensive instrumentation, and only reduces the detection limit to 5 nM. Surface-enhanced Raman spectroscopy is far more sensitive, enabling detection of spike protein to sub-picomolar concentrations. Control experiments performed using scrambled aptamers and using bovine serum albumin as an analyte show that this apta-sensing approach is both sensitive and selective, with no appreciable response observed for any controls. Overall, these proof-of-principle results demonstrate that SERS-based aptasensors hold great promise for development into rapid, point-of-use antigen detection systems, enabling mass testing without any need for reagents or laboratory expertise and equipment.
- ItemPlasma and Synovial Fluid Cell-Free DNA Concentrations Following Induction of Osteoarthritis in Horses(MDPI (Basel, Switzerland), 2023-03-14) Panizzi L; Dittmer KE; Vignes M; Doucet JS; Gedye K; Waterland MR; Rogers CW; Sano H; McIlwraith CW; Riley CB; Zucca EBiomarkers for osteoarthritis (OA) in horses have been extensively investigated, but translation into clinical use has been limited due to cost, limited sensitivity, and practicality. Identifying novel biomarkers that overcome these limitations could facilitate early diagnosis and therapy. This study aimed to compare the concentrations of synovial fluid (SF) and plasma cell-free DNA (cfDNA) over time in control horses with those with induced carpal OA. Following an established model, unilateral carpal OA was induced in 9 of 17 healthy Thoroughbred fillies, while the remainder were sham-operated controls. Synovial fluid and plasma samples were obtained before induction of OA (Day 0) and weekly thereafter until Day 63, and cfDNA concentrations were determined using fluorometry. The SF cfDNA concentrations were significantly higher for OA joints than for sham-operated joints on Days 28 (median 1430 μg/L and 631 μg/L, respectively, p = 0.017) and 63 (median 1537 μg/L and 606 μg/L, respectively, p = 0.021). There were no significant differences in plasma cfDNA between the OA and the sham groups after induction of carpal OA. Plasma cfDNA measurement is not sufficiently sensitive for diagnostic purposes in this induced model of OA. Synovial fluid cfDNA measurement may be used as a biomarker to monitor early disease progression in horses with OA.