Browsing by Author "Wade K"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemDoes flute angle influence box performance?(Springer Nature, 2023-09-23) Wade K; Todoroki C; Jamsari A; Gray-Stuart E; Tohill S; Bronlund J; Parker KIn the production of boxes, it is customary to align the flutes vertically, corresponding to a 0° flute angle. This configuration is widely believed to yield optimal compressive strength, despite existing evidence from corrugated flute boards and boxes that challenge this assumption. The present study investigates the hypothesis that non-vertical flute angles do not significantly compromise box compression strength and may potentially offer enhancements in other performance characteristics. Regular slotted container boxes (385 × 238 × 300 mm) constructed from single wall C-flute board were used in this study. Ten flute angles were selected for box level testing: 0°, 5°, 7.5°, 10°, 12.5°, 15°, 20°, 30°, 45° and 60°. Samples of converted board were subjected to edge crush testing (ECT) following TAPPI T-811 and four-point-bending following TAPPI T-820. Box crush testing (BCT) followed NZS 1301.800 2006 (New Zealand Standard). Component testing results were consistent with previous studies. Outcomes showed a general linear reduction in ECT with increasing flute angle, and nonlinear relationships between flute angle and bending force and stiffness. At the box level, peak load did not decline significantly between 0° and 45°, however 60° flute angles had significantly lower peak loads (α = 0.05). At certain angles, notably 10° and 30°, less variation in peak load was observed. BCT force and stiffness of the box significantly improved in terms of median and variation at 10° and 30°. Therefore, a flute angle of less than 45° does not significantly reduce compression strength.
- ItemInfluence of different box preparations on creep performance of corrugated fibreboard boxes subject to constant and cycling relative humidity environments(John Wiley and Sons, Ltd, 2022-06-01) Gray-Stuart EM; Wade K; Redding GP; Parker K; Bronlund JETo understand the effect of load and relative humidity (RH) on box creep in cool storage conditions, standard tests are performed. However, these test conditions are oversimplified compared with actual shipping conditions. Our aim is to develop test conditions that more closely mimic those encountered during refrigerated conditions to investigate their influence on creep performance and box lifetime. We compared three box preparations: (i) empty boxes used as a control, (ii) filled boxes, and (iii) boxes with only two side panels exposed to the atmosphere. A controlled environment test facility was used to subject sets of 24 boxes to 30% of their ultimate failure load under different cyclic and constant relative humidity conditions. Results indicate that filled boxes had substantially reduced performance in terms of secondary creep rate and lifetime. The fill in the box contributed to out-of-plane displacement of the side panels which manifested earlier than in the control, resulting in a higher creep rate. Boxes with only two exposed panels had lower moisture uptake and performed substantially better than the control. These findings demonstrate how creep performance and box lifetime depend on the box conditions including fill and the area of the box that is exposed for moisture transfer. Alternative box preparations which mimic supply chain conditions are worthy of investigation in creep analysis as they will help predict more accurately box performance in the cold supply chain.