Browsing by Author "Verkuil YI"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemGlobal flyway evolution in red knots Calidris canutus and genetic evidence for a Nearctic refugium(John Wiley and Sons, Ltd, 2022-04) Conklin JR; Verkuil YI; Battley PF; Hassell CJ; ten Horn J; Johnson JA; Tomkovich PS; Baker AJ; Piersma T; Fontaine MC; qu YPresent-day ecology and population structure are the legacies of past climate and habitat perturbations, and this is particularly true for species that are widely distributed at high latitudes. The red knot, Calidris canutus, is an arctic-breeding, long-distance migratory shorebird with six recognized subspecies defined by differences in morphology, migration behavior, and annual cycle phenology, in a global distribution thought to have arisen just since the last glacial maximum (LGM). We used nextRAD sequencing of 10,881 single-nucleotide polymorphisms (SNPs) to assess the neutral genetic structure and phylogeographic history of 172 red knots representing all known global breeding populations. Using population genetics approaches, including model-based scenario-testing in an approximate Bayesian computation (ABC) framework, we infer that red knots derive from two main lineages that diverged ca. 34,000 years ago, and thus most probably persisted at the LGM in both Palearctic and Nearctic refugia, followed by at least two instances of secondary contact and admixture. Within two Beringian subspecies (C. c. roselaari and rogersi), we detected previously unknown genetic structure among sub-populations sharing a migratory flyway, reflecting additional complexity in the phylogeographic history of the region. Conversely, we found very weak genetic differentiation between two Nearctic populations (rufa and islandica) with clearly divergent migratory phenotypes and little or no apparent contact throughout the annual cycle. Together, these results suggest that relative gene flow among migratory populations reflects a complex interplay of historical, geographical, and ecological factors.
- ItemHigh dispersal ability versus migratory traditions: Fine-scale population structure and post-glacial colonisation in bar-tailed godwits.(John Wiley and Sons Ltd, 2024-07-06) Conklin JR; Verkuil YI; Lefebvre MJM; Battley PF; Bom RA; Gill RE; Hassell CJ; Ten Horn J; Ruthrauff DR; Tibbitts TL; Tomkovich PS; Warnock N; Piersma T; Fontaine MC; Hansen MMIn migratory animals, high mobility may reduce population structure through increased dispersal and enable adaptive responses to environmental change, whereas rigid migratory routines predict low dispersal, increased structure, and limited flexibility to respond to change. We explore the global population structure and phylogeographic history of the bar-tailed godwit, Limosa lapponica, a migratory shorebird known for making the longest non-stop flights of any landbird. Using nextRAD sequencing of 14,318 single-nucleotide polymorphisms and scenario-testing in an Approximate Bayesian Computation framework, we infer that bar-tailed godwits existed in two main lineages at the last glacial maximum, when much of their present-day breeding range persisted in a vast, unglaciated Siberian-Beringian refugium, followed by admixture of these lineages in the eastern Palearctic. Subsequently, population structure developed at both longitudinal extremes: in the east, a genetic cline exists across latitude in the Alaska breeding range of subspecies L. l. baueri; in the west, one lineage diversified into three extant subspecies L. l. lapponica, taymyrensis, and yamalensis, the former two of which migrate through previously glaciated western Europe. In the global range of this long-distance migrant, we found evidence of both (1) fidelity to rigid behavioural routines promoting fine-scale geographic population structure (in the east) and (2) flexibility to colonise recently available migratory flyways and non-breeding areas (in the west). Our results suggest that cultural traditions in highly mobile vertebrates can override the expected effects of high dispersal ability on population structure, and provide insights for the evolution and flexibility of some of the world's longest migrations.