Browsing by Author "Vatanen T"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemDifferences in Compositions of Gut Bacterial Populations and Bacteriophages in 5-11 Year-Olds Born Preterm Compared to Full Term(Frontiers Media S.A., 2020-06-16) Jayasinghe TN; Vatanen T; Chiavaroli V; Jayan S; McKenzie EJ; Adriaenssens E; Derraik JGB; Ekblad C; Schierding W; Battin MR; Thorstensen EB; Cameron-Smith D; Forbes-Blom E; Hofman PL; Roy NC; Tannock GW; Vickers MH; Cutfield WS; O'Sullivan JM; Shkoporov APreterm infants are exposed to major perinatal, post-natal, and early infancy events that could impact on the gut microbiome. These events include infection, steroid and antibiotic exposure, parenteral nutrition, necrotizing enterocolitis, and stress. Studies have shown that there are differences in the gut microbiome during the early months of life in preterm infants. We hypothesized that differences in the gut microbial composition and metabolites in children born very preterm persist into mid-childhood. Participants were healthy prepubertal children aged 5-11 years who were born very preterm (≤32 weeks of gestation; n = 51) or at term (37-41 weeks; n = 50). We recorded the gestational age, birth weight, mode of feeding, mode of birth, age, sex, and the current height and weight of our cohort. We performed a multi'omics [i.e., 16S rRNA amplicon and shotgun metagenomic sequencing, SPME-GCMS (solid-phase microextraction followed by gas chromatography-mass spectrometry)] analysis to investigate the structure and function of the fecal microbiome (as a proxy of the gut microbiota) in our cross-sectional cohort. Children born very preterm were younger (7.8 vs. 8.3 years; p = 0.034), shorter [height-standard deviation score (SDS) 0.31 vs. 0.92; p = 0.0006) and leaner [BMI (body mass index) SDS -0.20 vs. 0.29; p < 0.0001] than the term group. Children born very preterm had higher fecal calprotectin levels, decreased fecal phage richness, lower plasma arginine, lower fecal branched-chain amino acids and higher fecal volatile (i.e., 3-methyl-butanoic acid, butyrolactone, butanoic acid and pentanoic acid) profiles. The bacterial microbiomes did not differ between preterm and term groups. We speculate that the observed very preterm-specific changes were established in early infancy and may impact on the capacity of the very preterm children to respond to environmental changes.
- ItemProtocol for the Gut Bugs in Autism Trial: a double-blind randomised placebo-controlled trial of faecal microbiome transfer for the treatment of gastrointestinal symptoms in autistic adolescents and adults.(BMJ Publishing Group, 2024-02-06) Tweedie-Cullen RY; Leong K; Wilson BC; Derraik JGB; Albert BB; Monk R; Vatanen T; Creagh C; Depczynski M; Edwards T; Beck K; Thabrew H; O'Sullivan JM; Cutfield WSINTRODUCTION: Autism (formally autism spectrum disorder) encompasses a group of complex neurodevelopmental conditions, characterised by differences in communication and social interactions. Co-occurring chronic gastrointestinal symptoms are common among autistic individuals and can adversely affect their quality of life. This study aims to evaluate the efficacy of oral encapsulated faecal microbiome transfer (FMT) in improving gastrointestinal symptoms and well-being among autistic adolescents and adults. METHODS AND ANALYSIS: This double-blind, randomised, placebo-controlled trial will recruit 100 autistic adolescents and adults aged 16-45 years, who have mild to severe gastrointestinal symptoms (Gastrointestinal Symptoms Rating Scale (GSRS) score ≥2.0). We will also recruit eight healthy donors aged 18-32 years, who will undergo extensive clinical screening. Recipients will be randomised 1:1 to receive FMT or placebo, stratified by biological sex. Capsules will be administered over two consecutive days following an overnight bowel cleanse with follow-up assessments at 6, 12 and 26 weeks post-treatment. The primary outcome is GSRS score at 6 weeks. Other assessments include anthropometry, body composition, hair cortisol concentration, gut microbiome profile, urine/plasma gut-derived metabolites, plasma markers of gut inflammation/permeability and questionnaires on general well-being, sleep quality, physical activity, food diversity and treatment tolerability. Adverse events will be recorded and reviewed by an independent data monitoring committee. ETHICS AND DISSEMINATION: Ethics approval for the study was granted by the Central Health and Disability Ethics Committee on 24 August 2021 (reference number: 21/CEN/211). Results will be published in peer-reviewed journals and presented to both scientific and consumer group audiences. TRIAL REGISTRATION NUMBER: ACTRN12622000015741.
- ItemStrain engraftment competition and functional augmentation in a multi-donor fecal microbiota transplantation trial for obesity(BioMed Central Ltd, 2021-12) Wilson BC; Vatanen T; Jayasinghe TN; Leong KSW; Derraik JGB; Albert BB; Chiavaroli V; Svirskis DM; Beck KL; Conlon CA; Jiang Y; Schierding W; Holland DJ; Cutfield WS; O'Sullivan JMBackground Donor selection is an important factor influencing the engraftment and efficacy of fecal microbiota transplantation (FMT) for complex conditions associated with microbial dysbiosis. However, the degree, variation, and stability of strain engraftment have not yet been assessed in the context of multiple donors. Methods We conducted a double-blinded randomized control trial of FMT in 87 adolescents with obesity. Participants were randomized to receive multi-donor FMT (capsules containing the fecal microbiota of four sex-matched lean donors) or placebo (saline capsules). Following a bowel cleanse, participants ingested a total of 28 capsules over two consecutive days. Capsules from individual donors and participant stool samples collected at baseline, 6, 12, and 26 weeks post-treatment were analyzed by shotgun metagenomic sequencing allowing us to track bacterial strain engraftment and its functional implications on recipients’ gut microbiomes. Results Multi-donor FMT sustainably altered the structure and the function of the gut microbiome. In what was effectively a microbiome competition experiment, we discovered that two donor microbiomes (one female, one male) dominated strain engraftment and were characterized by high microbial diversity and a high Prevotella to Bacteroides (P/B) ratio. Engrafted strains led to enterotype-level shifts in community composition and provided genes that altered the metabolic potential of the community. Despite our attempts to standardize FMT dose and origin, FMT recipients varied widely in their engraftment of donor strains. Conclusion Our study provides evidence for the existence of FMT super-donors whose microbiomes are highly effective at engrafting in the recipient gut. Dominant engrafting male and female donor microbiomes harbored diverse microbial species and genes and were characterized by a high P/B ratio. Yet, the high variability of strain engraftment among FMT recipients suggests the host environment also plays a critical role in mediating FMT receptivity. Trial registration The Gut Bugs trial was registered with the Australian New Zealand Clinical Trials Registry (ACTRN12615001351505). Trial protocol The trial protocol is available at https://bmjopen.bmj.com/content/9/4/e026174.
- ItemThe fecal microbiotas of women of Pacific and New Zealand European ethnicities are characterized by distinctive enterotypes that reflect dietary intakes and fecal water content.(Taylor and Francis Groups, 2023-02-17) Renall N; Lawley B; Vatanen T; Merz B; Douwes J; Corbin M; Te Morenga L; Kruger R; Breier BH; Tannock GWObesity is a complex, multifactorial condition that is an important risk factor for noncommunicable diseases including cardiovascular disease and type 2 diabetes. While prevention and management require a healthy and energy balanced diet and adequate physical activity, the taxonomic composition and functional attributes of the colonic microbiota may have a supplementary role in the development of obesity. The taxonomic composition and metabolic capacity of the fecal microbiota of 286 women, resident in Auckland New Zealand, was determined by metagenomic analysis. Associations with BMI (obese, nonobese), body fat composition, and ethnicity (Pacific, n = 125; NZ European women [NZE], n = 161) were assessed using regression analyses. The fecal microbiotas were characterized by the presence of three distinctive enterotypes, with enterotype 1 represented in both Pacific and NZE women (39 and 61%, respectively), enterotype 2 mainly in Pacific women (84 and 16%) and enterotype 3 mainly in NZE women (13 and 87%). Enterotype 1 was characterized mainly by the relative abundances of butyrate producing species, Eubacterium rectale and Faecalibacterium prausnitzii, enterotype 2 by the relative abundances of lactic acid producing species, Bifidobacterium adolescentis, Bifidobacterium bifidum, and Lactobacillus ruminis, and enterotype 3 by the relative abundances of Subdoligranulum sp., Akkermansia muciniphila, Ruminococcus bromii, and Methanobrevibacter smithii. Enterotypes were also associated with BMI, visceral fat %, and blood cholesterol. Habitual food group intake was estimated using a 5 day nonconsecutive estimated food record and a 30 day, 220 item semi-quantitative Food Frequency Questionnaire. Higher intake of 'egg' and 'dairy' products was associated with enterotype 3, whereas 'non-starchy vegetables', 'nuts and seeds' and 'plant-based fats' were positively associated with enterotype 1. In contrast, these same food groups were inversely associated with enterotype 2. Fecal water content, as a proxy for stool consistency/colonic transit time, was associated with microbiota taxonomic composition and gene pools reflective of particular bacterial biochemical pathways. The fecal microbiotas of women of Pacific and New Zealand European ethnicities are characterized by distinctive enterotypes, most likely due to differential dietary intake and fecal consistency/colonic transit time. These parameters need to be considered in future analyses of human fecal microbiotas.