Browsing by Author "Susnjak, T."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemAccelerated face detector training using the PSL framework(Massey University, 2009) Susnjak, T.; Barczak, A.L.C.; Hawick, K.A.We train a face detection system using the PSL framework [1] which combines the AdaBoost learning algorithm and Haar-like features. We demonstrate the ability of this framework to overcome some of the challenges inherent in training classifiers that are structured in cascades of boosted ensembles (CoBE). The PSL classifiers are compared to the Viola-Jones type cas- caded classifiers. We establish the ability of the PSL framework to produce classifiers in a complex domain in significantly reduced time frame. They also comprise of fewer boosted en- sembles albeit at a price of increased false detection rates on our test dataset. We also report on results from a more diverse number of experiments carried out on the PSL framework in order to shed more insight into the effects of variations in its adjustable training parameters.
- ItemA new 2D static hand gesture colour image dataset for ASL gestures(Massey University, 2011) Barczak, A.L.C.; Reyes, N.H.; Abastillas, M.; Piccio, A.; Susnjak, T.It usually takes a fusion of image processing and machine learning algorithms in order to build a fully-functioning computer vision system for hand gesture recognition. Fortunately, the complexity of developing such a system could be alleviated by treating the system as a collection of multiple sub-systems working together, in such a way that they can be dealt with in isolation. Machine learning need to feed on thousands of exemplars (e.g. images, features) to automatically establish some recognisable patterns for all possible classes (e.g. hand gestures) that applies to the problem domain. A good number of exemplars helps, but it is also important to note that the efficacy of these exemplars depends on the variability of illumination conditions, hand postures, angles of rotation, scaling and on the number of volunteers from whom the hand gesture images were taken. These exemplars are usually subjected to image processing first, to reduce the presence of noise and extract the important features from the images. These features serve as inputs to the machine learning system. Different sub-systems are integrated together to form a complete computer vision system for gesture recognition. The main contribution of this work is on the production of the exemplars. We discuss how a dataset of standard American Sign Language (ASL) hand gestures containing 2425 images from 5 individuals, with variations in lighting conditions and hand postures is generated with the aid of image processing techniques. A minor contribution is given in the form of a specific feature extraction method called moment invariants, for which the computation method and the values are furnished with the dataset.
- ItemA novel bootstrapping method for positive datasets in cascades of boosted ensembles(Massey University, 2010) Susnjak, T.; Barczak, A.L.C.; Hawick, K.A.We present a novel method for efficiently training a face detector using large positive datasets in a cascade of boosted ensembles. We extend the successful Viola-Jones [1] framework which achieved low false acceptance rates through bootstrapping negative samples with the capability to also bootstrap large positive datasets thereby capturing more in-class variation of the target object. We achieve this form of bootstrapping by way of an additional embedded cascade within each layer and term the new structure as the Bootstrapped Dual-Cascaded (BDC) framework. We demonstrate its ability to easily and efficiently train a classifier on large and complex face datasets which exhibit acute in-class variation.
- ItemA reconfigurable hybrid intelligent system for robot navigation(Massey University, 2011) Reyes, N.H.; Barczak, A.L.C.; Fatahillah; Susnjak, T.Soft computing has come of age to o er us a wide array of powerful and e cient algorithms that independently matured and in uenced our approach to solving problems in robotics, search and optimisation. The steady progress of technology, however, induced a ux of new real-world applications that demand for more robust and adaptive computational paradigms, tailored speci cally for the problem domain. This gave rise to hybrid intelligent systems, and to name a few of the successful ones, we have the integration of fuzzy logic, genetic algorithms and neural networks. As noted in the literature, they are signi cantly more powerful than individual algorithms, and therefore have been the subject of research activities in the past decades. There are problems, however, that have not succumbed to traditional hybridisation approaches, pushing the limits of current intelligent systems design, questioning their solutions of a guarantee of optimality, real-time execution and self-calibration. This work presents an improved hybrid solution to the problem of integrated dynamic target pursuit and obstacle avoidance, comprising of a cascade of fuzzy logic systems, genetic algorithm, the A* search algorithm and the Voronoi diagram generation algorithm.