Browsing by Author "Singh R"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- ItemA Review of Nutritional Water Productivity (NWP) in Agriculture: Why It Is Promoted and How It Is Assessed?(MDPI (Basel, Switzerland), 2023-12-14) Drastig K; Singh R; Telesca F-M; Carra SZ; Jordan J; Orange DAssessment of nutritional water productivity (NWP) combines a metric of crop or livestock production per unit water consumed and human nutritional value of the food produced. As such, it can rationalize the use of scarce water for a portfolio of crop and livestock production systems that jointly match human nutritional needs and reduce water scarcity impacts. However, a comprehensive search and review of 40 NWP studies highlighted that current NWP studies vary widely in terms of their methodological approaches, the data and tools used and the water flows and nutrient content accounted for. Most of the studies accounted for evapotranspiration stemming from precipitation and technical water, and/or inclusion of the withdrawn technical water. Water scarcity was only addressed in four studies. The reported NWP values also varied for accounting of macro- (energy, protein, fat and carbohydrates) and micro-nutrient (minerals and vitamins) content. The methodological differences, however, severely limit the informative value of reported NWP values. A multidisciplinary research effort is required to further develop standardized metrics for NWP, including its local environmental water scarcity impacts. A robust NWP analysis framework in agriculture should focus on the integration of assessments of NWP and water scarcity impact (WSI), and development of more field measurements and locally calibrated and validated agrohydrological and farm production models to quantify reliable NWP values and their associated WSI of agriculture production systems worldwide.
- ItemOrganizational Commitment and Burnout During the COVID-19 Pandemic: A Comparative Analysis in the United States and New Zealand(Taylor and Francis Group on behalf of the World Communication Association, 2024-06-17) Croucher SM; Rocker K; Singh R; Feekery A; Ashwell D; Green M; Murray N; Anderson KThis study examined the link between organizational commitment (OC) and burnout during COVID-19 in New Zealand and the United States. Results revealed OC and burnout differed between the U.S. and New Zealand. In addition, the correlations between OC and the dimensions of burnout differed between the nations, particularly on issues linked with emotional exhaustion and personal accomplishment. These results point to the influence of lockdowns and other physical limitations on burnout and commitment in organizations. Theoretical and practical implications are discussed, as well as areas for future research.
- ItemThe effects of pastoral hill country natural landscape features and land management practices on nitrate losses and its potential attenuation for improved water quality(Global Initiative of Sustainable Agriculture and Environment and John Wiley and Sons Australia, Ltd, 2024-03-22) Chibuike G; Singh R; Burkitt LPastoral farming on hill country landscapes influences nitrogen (N) dynamics and its losses to freshwater. This study reviewed the current literature identifying key effects of pastoral hill country landscape features and land management practices on nitrate losses to receiving waters. The review also highlighted the potential effects of inherent landscape features on nitrate attenuation pathways for better water quality outcomes. Intensive land use activities involving high rates of fertiliser application, higher stocking rates and cattle grazing, relative to sheep grazing, are more likely to increase nitrate loss, especially on lower slopes. However, soils with a high carbon (C) storage capacity such as allophanic soils potentially limit nitrate loss via denitrification in subsoil layers. Hill country seepage wetlands also offer an opportunity to attenuate nitrate loss, though their efficacy is largely impacted by hydrological variations in their inflows and outflows. By enhancing the natural nitrate attenuation capacity of seepage wetlands, mapping and strategic use of high subsoil denitrification potential, effective riparian management, efficient fertiliser and grazing practices and the incorporation of these farm management strategies into Freshwater Farm Plans (FWFPs), wider environmental and farm productivity/profitability goals, including improved water quality, would be achieved on pastoral hill country landscapes.
- ItemThe Water Footprint of Pastoral Dairy Farming: The Effect of Water Footprint Methods, Data Sources and Spatial Scale(MDPI (Basel, Switzerland), 2024-02) Higham CD; Singh R; Horne DJ; Gerbens-Leenes WThe water footprint of pastoral dairy milk production was assessed by analysing water use at 28 irrigated and 60 non-irrigated ‘rain-fed’ pastoral dairy farms in three regions of New Zealand. Two water footprint methods, the WFN-based blue water footprint impact index (WFIIblue) and the Available WAter REmaining (AWARE) water scarcity footprint (WFAWARE), were evaluated using different sets of global or local data sources, different rates of environmental flow requirements, and the regional or catchment scale of the analysis. A majority (~99%) of the consumptive water footprint of a unit of pastoral dairy milk production (L/kg of fat- and protein-corrected milk) was quantified as being associated with green and blue water consumption via evapotranspiration for pasture and feed used at the studied dairy farms. The quantified WFIIblue (-) and WFAWARE (m3 world eq./kg of FPCM) indices ranked in a similar order (from lowest to highest) regarding the water scarcity footprint impact associated with pastoral dairy milk production across the study regions and catchments. However, use of the global or local data sets significantly affected the quantification and comparative rankings of the WFIIblue and WFAWARE values. Compared to the local data sets, using the global data sets resulted in significant under- or overestimation of the WFIIblue and WFAWARE values across the study regions and catchments. A catchment-scale analysis using locally available data sets and calibrated models is recommended to robustly assess water consumption and its associated water scarcity impact due to pastoral dairy milk production in local catchments.
- ItemWater Footprints of Dairy Milk Processing Industry: A Case Study of Punjab (India)(MDPI (Basel, Switzerland), 2024-02) Sharma H; Singh PK; Kaur I; Singh R; Teodosiu CA robust assessment of water used in agriculture, including livestock production systems and supply chains, is critical to inform diversification and the development of productivity and sustainable food production systems. This paper presents a detailed analysis of water used and consumed in nine dairy milk processing plants spread across Punjab, India’s leading dairy milk-producing state. Over the five years (2015–2019), the direct water use (DWU) was quantified at 3.31 L of groundwater per kg of milk processed. Only about 26% of the direct water used was consumed, including evaporative losses in various milk processing operations, while the remaining 74% was returned as effluent discharges. The average total water footprint (TWF), accounting for both direct and indirect water consumption, was quantified at 9.0 L of water per kg of milk processed. The majority share (~89%) of the total water footprint was contributed by the indirect water footprint associated with the consumption of electricity (energy) in dairy milk processing activities. The plant’s milk processing capacity and processing products mix also affected significant seasonal and annual variations in the direct and indirect water footprints of dairy milk processing. The analysis also found an inverse relationship between the average total water footprint and the average monthly amount of milk processed in the study plants. Therefore, efforts to reduce the indirect water footprint (associated with energy consumption), the treatment and recycling of effluent discharges, and the optimization of milk processing capacity, the dairy processing product mix, and the locations of dairy processing plants are expected to help reduce the water footprint of dairy processing in the state.