Browsing by Author "Silva SI"
Now showing 1 - 19 of 19
Results Per Page
Sort Options
- ItemAn Isolated Mass-gap Black Hole or Neutron Star Detected with Astrometric Microlensing(IOP Publishing, 2022-07-06) Lam CY; Lu JR; Udalski A; Bond I; Bennett DP; Skowron J; Mróz P; Poleski R; Sumi T; Szymański MK; Kozłowski S; Pietrukowicz P; Soszyński I; Ulaczyk K; Wyrzykowski Ł; Miyazaki S; Suzuki D; Koshimoto N; Rattenbury NJ; Hosek Jr MW; Abe F; Barry R; Bhattacharya A; Fukui A; Fujii H; Hirao Y; Itow Y; Kirikawa R; Kondo I; Matsubara Y; Matsumoto S; Muraki Y; Olmschenk G; Ranc C; Okamura A; Satoh Y; Silva SI; Toda T; Tristram PJ; Vandorou A; Yama H; Abrams NS; Agarwal S; Rose S; Terry SKWe present the analysis of five black hole candidates identified from gravitational microlensing surveys. Hubble Space Telescope astrometric data and densely sampled light curves from ground-based microlensing surveys are fit with a single-source, single-lens microlensing model in order to measure the mass and luminosity of each lens and determine if it is a black hole. One of the five targets (OGLE-2011-BLG-0462/MOA-2011-BLG-191 or OB110462 for short) shows a significant >1 mas coherent astrometric shift, little to no lens flux, and has an inferred lens mass of 1.6-4.4 M . This makes OB110462 the first definitive discovery of a compact object through astrometric microlensing and it is most likely either a neutron star or a low-mass black hole. This compact-object lens is relatively nearby (0.70-1.92 kpc) and has a slow transverse motion of 30 km s-1. OB110462 shows significant tension between models well fit to photometry versus astrometry, making it currently difficult to distinguish between a neutron star and a black hole. Additional observations and modeling with more complex system geometries, such as binary sources, are needed to resolve the puzzling nature of this object. For the remaining four candidates, the lens masses are 2M , and they are unlikely to be black holes two of the four are likely white dwarfs or neutron stars. We compare the full sample of five candidates to theoretical expectations on the number of black holes in the Milky Way (1/4108) and find reasonable agreement given the small sample size.
- ItemAn Isolated Stellar-mass Black Hole Detected through Astrometric Microlensing(IOP Publishing on behalf of the American Astronomical Society, 2022-07-06) Sahu KC; Anderson J; Casertano S; Bond HE; Udalski A; Dominik M; Calamida A; Bellini A; Brown TM; Rejkuba M; Bajaj V; Kains N; Ferguson HC; Fryer CL; Yock P; Mróz P; Kozłowski S; Pietrukowicz P; Poleski R; Skowron J; Soszyński I; Szymański MK; Ulaczyk K; Wyrzykowski Ł; Barry RK; Bennett DP; Bond IA; Hirao Y; Silva SI; Kondo I; Koshimoto N; Ranc C; Rattenbury NJ; Sumi T; Suzuki D; Tristram PJ; Vandorou A; Beaulieu J-P; Marquette J-B; Cole A; Fouqué P; Hill K; Dieters S; Coutures C; Dominis-Prester D; Bennett C; Bachelet E; Menzies J; Albrow M; Pollard K; Gould A; Yee JC; Allen W; Almeida LA; Christie G; Drummond J; Gal-Yam A; Gorbikov E; Jablonski F; Lee C-U; Maoz D; Manulis I; McCormick J; Natusch T; Pogge RW; Shvartzvald Y; Jørgensen UG; Alsubai KA; Andersen MI; Bozza V; Novati SC; Burgdorf M; Hinse TC; Hundertmark M; Husser T-O; Kerins E; Longa-Peña P; Mancini L; Penny M; Rahvar S; Ricci D; Sajadian S; Skottfelt J; Snodgrass C; Southworth J; Tregloan-Reed J; Wambsganss J; Wertz O; Tsapras Y; Street RA; Bramich DM; Horne K; Steele IAWe report the first unambiguous detection and mass measurement of an isolated stellar-mass black hole (BH). We used the Hubble Space Telescope (HST) to carry out precise astrometry of the source star of the long-duration (t E ≃ 270 days), high-magnification microlensing event MOA-2011-BLG-191/OGLE-2011-BLG-0462 (hereafter designated as MOA-11-191/OGLE-11-462), in the direction of the Galactic bulge. HST imaging, conducted at eight epochs over an interval of 6 yr, reveals a clear relativistic astrometric deflection of the background star's apparent position. Ground-based photometry of MOA-11-191/OGLE-11-462 shows a parallactic signature of the effect of Earth's motion on the microlensing light curve. Combining the HST astrometry with the ground-based light curve and the derived parallax, we obtain a lens mass of 7.1 ± 1.3 M ⊙ and a distance of 1.58 ± 0.18 kpc. We show that the lens emits no detectable light, which, along with having a mass higher than is possible for a white dwarf or neutron star, confirms its BH nature. Our analysis also provides an absolute proper motion for the BH. The proper motion is offset from the mean motion of Galactic disk stars at similar distances by an amount corresponding to a transverse space velocity of �1/445 km s-1, suggesting that the BH received a "natal kick"from its supernova explosion. Previous mass determinations for stellar-mass BHs have come from radial velocity measurements of Galactic X-ray binaries and from gravitational radiation emitted by merging BHs in binary systems in external galaxies. Our mass measurement is the first for an isolated stellar-mass BH using any technique.
- ItemAsteroid Lightcurves from the MOA-II Survey: A pilot study(Oxford University Press on behalf of Royal Astronomical Society, 2022-08) Cordwell AJ; Rattenbury NJ; Bannister MT; Cowan P; Abe F; Barry R; Bennett DP; Bhattacharya A; Bond IA; Fujii H; Fukui A; Itow Y; Silva SI; Hirao Y; Kirikawa R; Kondo I; Koshimoto N; Matsubara Y; Matsumoto S; Muraki Y; Miyazaki S; Okamura A; Ranc C; Satoh Y; Sumi T; Suzuki D; Tristram PJ; Toda T; Yama H; Yonehara AThe Microlensing Observations in Astrophysics (MOA-II) survey has performed high cadence, wide field observations of the Galactic Bulge from New Zealand since 2005. The hourly cadence of the survey during eight months of the year, across nearly 50 deg2 of sky, provides an opportunity to sample asteroid lightcurves in the broad MOA-R filter. We perform photometry of a subset of bright asteroids numbered observed by the survey. We obtain 26 asteroid rotation periods, including for two asteroids where no prior data exist, and present evidence for the possible non-principal axis rotation of (2011) Veteraniya. This archival search could be extended to several thousands of asteroids brighter than 22nd magnitude.
- ItemBrown dwarf companions in microlensing binaries detected during the 2016-2018 seasons(EDP Sciences on behalf of the European Southern Observatory, 2022-11-08) Han C; Ryu Y-H; Shin I-G; Jung YK; Kim D; Hirao Y; Bozza V; Albrow MD; Zang W; Udalski A; Bond IA; Chung S-J; Gould A; Hwang K-H; Shvartzvald Y; Yang H; Cha S-M; Kim D-J; Kim H-W; Kim S-L; Lee C-U; Lee D-J; Yee JC; Lee Y; Park B-G; Pogge RW; Mróz P; Szymański MK; Skowron J; Poleski R; Soszyński I; Pietrukowicz P; Kozłowski S; Ulaczyk K; Rybicki KA; Iwanek P; Wrona M; Abe F; Barry R; Bennett DP; Bhattacharya A; Fujii H; Fukui A; Silva SI; Kirikawa R; Kondo I; Koshimoto N; Matsubara Y; Matsumoto S; Miyazaki S; Muraki Y; Okamura A; Olmschenk G; Ranc C; Rattenbury NJ; Satoh Y; Sumi T; Suzuki D; Toda T; Tristram PJ; Vandorou A; Yama H; Itow YAims. With the aim of finding microlensing binaries containing brown dwarf (BD) companions, we investigate the microlensing survey data collected during the 2016 2018 seasons. Methods. For this purpose, we first modeled lensing events with light curves exhibiting anomaly features that are likely to be produced by binary lenses. We then sorted out BD companion binary-lens events by applying the criterion that the companion-to-primary mass ratio is q 0.1. With this procedure, we identify six binaries with candidate BD companions: OGLE-2016-BLG-0890L, MOA-2017-BLG-477L, OGLE-2017-BLG-0614L, KMT-2018-BLG-0357L, OGLE-2018-BLG-1489L, and OGLE-2018-BLG-0360L. Results. We estimated the masses of the binary companions by conducting Bayesian analyses using the observables of the individual lensing events. According to the Bayesian estimation of the lens masses, the probabilities for the lens companions of the events OGLE-2016-BLG-0890, OGLE-2017-BLG-0614, OGLE-2018-BLG-1489, and OGLE-2018-BLG-0360 to be in the BD mass regime are very high with PBD > 80%. For MOA-2017-BLG-477 and KMT-2018-BLG-0357, the probabilities are relatively low with PBD = 61% and 69%, respectively.
- ItemFour microlensing giant planets detected through signals produced by minor-image perturbations(EDP Sciences on behalf of The European Southern Observatory, 2024-07) Han C; Bond IA; Lee C-U; Gould A; Albrow MD; Chung S-J; Hwang K-H; Jung YK; Ryu Y-H; Shvartzvald Y; Shin I-G; Yee JC; Yang H; Zang W; Cha S-M; Kim D; Kim D-J; Kim S-L; Lee D-J; Lee Y; Park B-G; Pogge RW; Abe F; Bando K; Barry R; Bennett DP; Bhattacharya A; Fujii H; Fukui A; Hamada R; Hamada S; Hamasaki N; Hirao Y; Silva SI; Itow Y; Kirikawa R; Koshimoto N; Matsubara Y; Miyazaki S; Muraki Y; Nagai T; Nunota K; Olmschenk G; Ranc C; Rattenbury NJ; Satoh Y; Sumi T; Suzuki D; Tomoyoshi M; Tristram PJ; Vandorou A; Yama H; Yamashita K; Bachelet E; Rota P; Bozza V; Zielinski P; Street RA; Tsapras Y; Hundertmark M; Wambsganss J; Wyrzykowski Ł; Jaimes RF; Cassan A; Dominik M; Rybicki KA; Rabus MAims. We investigated the nature of the anomalies appearing in four microlensing events KMT-2020-BLG-0757, KMT-2022-BLG-0732, KMT-2022-BLG-1787, and KMT-2022-BLG-1852. The light curves of these events commonly exhibit initial bumps followed by subsequent troughs that extend across a substantial portion of the light curves. Methods. We performed thorough modeling of the anomalies to elucidate their characteristics. Despite their prolonged durations, which differ from the usual brief anomalies observed in typical planetary events, our analysis revealed that each anomaly in these events originated from a planetary companion located within the Einstein ring of the primary star. It was found that the initial bump arouse when the source star crossed one of the planetary caustics, while the subsequent trough feature occurred as the source traversed the region of minor image perturbations lying between the pair of planetary caustics. Results. The estimated masses of the host and planet, their mass ratios, and the distance to the discovered planetary systems are (Mhost/M☉, Mplanet/MJ, q/10−3, DL/kpc) = (0.58−+00.3033, 10.71−+56.6117, 17.61 ± 2.25, 6.67+−01.9330) for KMT-2020-BLG-0757, (0.53+−00.3131, 1.12+−00.6565, 2.01 ± 0.07, 6.66+−11.1984) for KMT-2022-BLG-0732, (0.42−+00.2332, 6.64−+43.9864, 15.07 ± 0.86, 7.55+−01.8930) for KMT-2022-BLG-1787, and (0.32+−00.3419, 4.98+−52.4294, 8.74 ± 0.49, 6.27+−01.9015) for KMT-2022-BLG-1852. These parameters indicate that all the planets are giants with masses exceeding the mass of Jupiter in our solar system and the hosts are low-mass stars with masses substantially less massive than the Sun.
- ItemFour sub-Jovian-mass planets detected by high-cadence microlensing surveys(EDP Sciences on behalf of the European Southern Observatory, 2022-08-05) Han C; Kim D; Gould A; Udalski A; Bond IA; Bozza V; Jung YK; Albrow MD; Chung S-J; Hwang K-H; Ryu Y-H; Shin I-G; Shvartzvald Y; Yee JC; Zang W; Cha S-M; Kim D-J; Kim S-L; Lee C-U; Lee D-J; Lee Y; Park B-G; Pogge RW; Mróz P; Szymański MK; Skowron J; Poleski R; Soszyński I; Pietrukowicz P; Kozaowski S; Ulaczyk K; Rybicki KA; Iwanek P; Abe F; Barry RK; Bennett DP; Bhattacharya A; Fujii H; Fukui A; Hirao Y; Itow Y; Kirikawa R; Koshimoto N; Kondo I; Matsubara Y; Matsumoto S; Miyazaki S; Muraki Y; Olmschenk G; Okamura A; Ranc C; Rattenbury NJ; Satoh Y; Silva SI; Sumi T; Suzuki D; Toda T; Tristram PJ; Vandorou A; Yama HAims. With the aim of finding short-term planetary signals, we investigated the data collected from current high-cadence microlensing surveys. Methods. From this investigation, we found four planetary systems with low planet-to-host mass ratios, including OGLE-2017-BLG-1691L, KMT-2021-BLG-0320L, KMT-2021-BLG-1303L, and KMT-2021-BLG-1554L. Despite the short durations, ranging from a few hours to a couple of days, the planetary signals were clearly detected by the combined data of the lensing surveys. We found that three of the planetary systems have mass ratios on the order of 10-4 and the other has a mass ratio that is slightly greater than 10-3. Results. The estimated masses indicate that all discovered planets have sub-Jovian masses. The planet masses of KMT-2021-BLG-0320Lb, KMT-2021-BLG-1303Lb, and KMT-2021-BLG-1554Lb correspond to ∼0.10, ∼0.38, and ∼0.12 times the mass of the Jupiter, and the mass of OGLE-2017-BLG-1691Lb corresponds to that of the Uranus. The estimated mass of the planet host KMT-2021-BLG-1554L, Mhost ∼ 0.08 M⊙, corresponds to the boundary between a star and a brown dwarf. Besides this system, the host stars of the other planetary systems are low-mass stars with masses in the range of ∼[0.3-0.6] M⊙. The discoveries of the planets fully demonstrate the capability of the current high-cadence microlensing surveys in detecting low-mass planets.
- ItemKMT-2021-BLG-1077L: The fifth confirmed multiplanetary system detected by microlensing(EDP Sciences on behalf of the European Southern Observatory, 2022-06-20) Han C; Gould A; Bond IA; Jung YK; Albrow MD; Chung S-J; Hwang K-H; Ryu Y-H; Shin I-G; Shvartzvald Y; Yee JC; Zang W; Cha S-M; Kim D-J; Kim S-L; Lee C-U; Lee D-J; Lee Y; Park B-G; Pogge RW; Kim D; Abe F; Barry RK; Bennett DP; Bhattacharya A; Fujii H; Fukui A; Hirao Y; Itow Y; Kirikawa R; Koshimoto N; Kondo I; Matsubara Y; Matsumoto S; Miyazaki S; Muraki Y; Olmschenk G; Okamura A; Ranc C; Rattenbury NJ; Satoh Y; Silva SI; Sumi T; Suzuki D; Toda T; Tristram PJ; Vandorou A; Yama HAims. The high-magnification microlensing event KMT-2021-BLG-1077 exhibits a subtle and complex anomaly pattern in the region around the peak. We analyze the lensing light curve of the event with the aim of revealing the nature of the anomaly. Methods. We test various models in combination with several interpretations: that the lens is a binary (2L1S), the source is a binary (1L2S), both the lens and source are binaries (2L2S), or the lens is a triple system (3L1S). We search for the best-fit models under the individual interpretations of the lens and source systems. Results. We find that the anomaly cannot be explained by the usual three-body (2L1S and 1L2S) models. The 2L2S model improves the fit compared to the three-body models, but it still leaves noticeable residuals. On the other hand, the 3L1S interpretation yields a model explaining all the major anomalous features in the lensing light curve. According to the 3L1S interpretation, the estimated mass ratios of the lens companions to the primary are ~1.56 A - 10a- 3 and ~1.75 A - 10a- 3, which correspond to ~1.6 and ~1.8 times the Jupiter/Sun mass ratio, respectively, and therefore the lens is a multiplanetary system containing two giant planets. With the constraints of the event time-scale and angular Einstein radius, it is found that the host of the lens system is a low-mass star of mid-to-late M spectral type with amass of Mh = 0.14a- 0.07+0.19 MI, and it hosts two gas giant planets with masses of Mp1 = 0.22a- 0.12+0.31 MJ and Mp2 = 0.25a- 0.13+0.35. The planets lie beyond the snow line of the host with projected separations of aap1 = 1.26a- 1.08+1.41 AU and aap2 = 0.93a- 0.80+1.05 AU. The planetary system resides in the Galactic bulge at a distance of DL = 8.24a- 1.16+1.02 kpc. The lens of the event is the fifth confirmed multiplanetary system detected by microlensing following OGLE-2006-BLG-109L, OGLE-2012-BLG-0026L, OGLE-2018-BLG-1011L, and OGLE-2019-BLG-0468L.
- ItemMOA-2020-BLG-135Lb: A New Neptune-class Planet for the Extended MOA-II Exoplanet Microlens Statistical Analysis(IOP Publishing on behalf of the American Astronomical Society, 2022-09-01) Silva SI; Ranc C; Bennett DP; Bond IA; Zang W; Abe F; Barry R; Bhattacharya A; Fujii H; Fukui A; Hirao Y; Itow Y; Kirikawa R; Kondo I; Koshimoto N; Matsubara Y; Matsumoto S; Miyazaki S; Muraki Y; Olmschenk G; Okamura A; Rattenbury NJ; Satoh Y; Sumi T; Suzuki D; Toda T; Tristram PJ; Vandorou A; Yama H; Petric A; Burdullis T; Fouqué P; Mao S; Penny MT; Zhu W; Rau GWe report the light-curve analysis for the event MOA-2020-BLG-135, which leads to the discovery of a new Neptune-class planet, MOA-2020-BLG-135Lb. With a derived mass ratio of q = 1.52-0.31+0.39 ´ 10-4 and separation s ≈ 1, the planet lies exactly at the break and likely peak of the exoplanet mass-ratio function derived by the Microlensing Observations in Astrophysics (MOA) Collaboration. We estimate the properties of the lens system based on a Galactic model and considering two different Bayesian priors: one assuming that all stars have an equal planet-hosting probability and the other that planets are more likely to orbit more-massive stars. With a uniform host mass prior, we predict that the lens system is likely to be a planet of mass mplanet = 11.3-6.9+19.2 MÅ and a host star of mass Mhost = 0.23-0.14+0.39 M☉, located at a distance DL = 7.9-1.0+1.0 kpc. With a prior that holds that planet occurrence scales in proportion to the host-star mass, the estimated lens system properties are mplanet = 25-15+22 MÅ, Mhost = 0.53-0.32+0.42 M☉, and DL = 8.3-1.0+0.9 kpc. This planet qualifies for inclusion in the extended MOA-II exoplanet microlens sample.
- ItemMOA-2020-BLG-208Lb: Cool Sub-Saturn-mass Planet within Predicted Desert(American Astronomical Society, 2023-03) Olmschenk G; Bennett DP; Bond IA; Zang W; Jung YK; Yee JC; Bachelet E; Abe F; Barry RK; Bhattacharya A; Fujii H; Fukui A; Hirao Y; Silva SI; Itow Y; Kirikawa R; Kondo I; Koshimoto N; Matsubara Y; Matsumoto S; Miyazaki S; Munford B; Muraki Y; Okamura A; Ranc C; Rattenbury NJ; Satoh Y; Sumi T; Suzuki D; Toda T; Tristram PJ; Vandorou A; Yama H; Albrow MD; Cha S-M; Chung S-J; Gould A; Han C; Hwang K-H; Kim D-J; Kim H-W; Kim S-L; Lee C-U; Lee D-J; Lee Y; Park B-G; Pogge RW; Ryu Y-H; Shin I-G; Shvartzvald Y; Christie G; Cooper T; Drummond J; Green J; Hennerley S; McCormick J; Monard LAG; Natusch T; Porritt I; Tan T-G; Mao S; Maoz D; Penny MT; Zhu W; Bozza V; Cassan A; Dominik M; Hundertmark M; Jaimes RF; Kruszyńska K; Rybicki KA; Street RA; Tsapras Y; Wambsganss J; Wyrzykowski L; Zieliński P; Rau GWe analyze the MOA-2020-BLG-208 gravitational microlensing event and present the discovery and characterization of a new planet, MOA-2020-BLG-208Lb, with an estimated sub-Saturn mass. With a mass ratio q=3.17-0.26+0.28×10-4, the planet lies near the peak of the mass-ratio function derived by the MOA collaboration and near the edge of expected sample sensitivity. For these estimates we provide results using two mass-law priors: one assuming that all stars have an equal planet-hosting probability, and the other assuming that planets are more likely to orbit around more massive stars. In the first scenario, we estimate that the lens system is likely to be a planet of mass mplanet=46-24+42M⊕ and a host star of mass Mhost=0.43-0.23+0.39M⊙, located at a distance DL=7.49-1.13+0.99kpc . For the second scenario, we estimate mplanet=69-34+37M⊕, Mhost=0.66-0.32+0.35M⊙, and DL=7.81-0.93+0.93kpc . The planet has a projected separation as a fraction of the Einstein ring radius s=1.3807-0.0018+0.0018 . As a cool sub-Saturn-mass planet, this planet adds to a growing collection of evidence for revised planetary formation models
- ItemOGLE-2014-BLG-0319: A Sub-Jupiter-mass Planetary Event Encountered Degeneracy with Different Mass Ratios and Lens-source Relative Proper Motions(IOP Publishing on behalf of the American Astronomical Society, 2022-03-01) Miyazaki S; Suzuki D; Udalski A; Koshimoto N; Bennett DP; Sumi T; Rattenbury N; Cheongho H; Abe F; Barry RK; Bhattacharya A; Bond IA; Fukui A; Fujii H; Hirao Y; Silva SI; Itow Y; Kirikawa R; Kondo I; Munford B; Matsubara Y; Matsumoto S; Muraki Y; Okamura A; Olmschenk G; Ranc C; Satoh YK; Toda T; Tristram PJ; Yama H; Yonehara A; Poleski R; Mróz P; Skowron J; Szymański MK; Soszyński I; Pietrukowicz P; Kozłowski S; Ulaczyk K; Wyrzykowski ŁWe report the discovery of a sub-Jovian-mass planet, OGLE-2014-BLG-0319Lb. The characteristics of this planet will be added into a future extended statistical analysis of the Microlensing Observations in Astrophysics (MOA) collaboration. The planetary anomaly of the light curve is characterized by MOA and OGLE survey observations and results in three degenerate models with different planetary-mass ratios of q = (10.3, 6.6, 4.5) × 10-4. We find that the last two models require unreasonably small lens-source relative proper motions of μ rel ∼1 mas yr-1. Considering Galactic prior probabilities, we rule out these two models from the final result. We conduct a Bayesian analysis to estimate physical properties of the lens system using a Galactic model and find that the lens system is composed of a 0.49-0.27+0.35MJup sub-Jovian planet orbiting a 0.47-0.25+0.33M⊙ M dwarf near the Galactic Bulge. This analysis demonstrates that Galactic priors are useful to resolve this type of model degeneracy. This is important for estimating the mass-ratio function statistically. However, this method would be unlikely successful in shorter timescale events, which are mostly due to low-mass objects, like brown dwarfs or free-floating planets. Therefore, careful treatment is needed for estimating the mass-ratio function of the companions around such low-mass hosts, which only the microlensing can probe.
- ItemOGLE-2015-BLG-0845L: a low-mass M dwarf from the microlensing parallax and xallarap effects(Oxford University Press, 2024-09-01) Hu Z; Zhu W; Gould A; Udalski A; Sumi T; Chen P; Calchi Novati S; Yee JC; Beichman CA; Bryden G; Carey S; Fausnaugh M; Scott Gaudi B; Henderson CB; Shvartzvald Y; Wibking B; Mroz P; Skowron J; Poleski R; Szymanski MK; Soszynski I; Pietrukowicz P; Kozłowski S; Ulaczyk K; Rybicki KA; Iwanek P; Wrona M; Gromadzki MG; Abe F; Barry R; Bennett DP; Bhattacharya A; Bond IA; Fujii H; Fukui A; Hamada R; Hirao Y; Silva SI; Itow Y; Kirikawa R; Koshimoto N; Matsubara Y; Miyazaki S; Muraki Y; Olmschenk G; Ranc C; Rattenbury NJ; Satoh Y; Suzuki D; Tomoyoshi M; Tristram PJ; Vandorou A; Yama H; Yamashita KWe present the analysis of the microlensing event OGLE-2015-BLG-0845, which was affected by both the microlensing parallax and xallarap effects. The former was detected via the simultaneous observations from the ground and Spitzer, and the latter was caused by the orbital motion of the source star in a relatively close binary. The combination of these two effects led to a mass measurement of the lens object, revealing a low-mass (0.14 ± 0.05 M) M dwarf at the bulge distance (7.6 ± 1.0 kpc). The source binary consists of a late F-type subgiant and a K-type dwarf of ∼ 1.2 and ∼ 0.9M, respectively, and the orbital period is 70 ± 10 d. OGLE-2015-BLG-0845 is the first single-lens event in which the lens mass is measured via the binarity of the source. Given the abundance of binary systems as potential microlensing sources, the xallarap effect may not be a rare phenomenon. Our work thus highlights the application of the xallarap effect in the mass determination of microlenses, and the same method can be used to identify isolated dark lenses.
- ItemOGLE-2018-BLG-0971, MOA-2023-BLG-065, and OGLE-2023-BLG-0136: Microlensing events with prominent orbital effects(EDP Sciences, 2024-06-14) Han C; Udalski A; Bond IA; Lee C-U; Gould A; Albrow MD; Chung S-J; Hwang K-H; Jung YK; Kim H-W; Ryu Y-H; Shvartzvald Y; Shin I-G; Yee JC; Yang H; Zang W; Cha S-M; Kim D; Kim D-J; Kim S-L; Lee D-J; Lee Y; Park B-G; Pogge RW; Mróz P; Szymański MK; Skowron J; Poleski R; Soszyński I; Pietrukowicz P; Kozłowski S; Rybicki KA; Iwanek P; Ulaczyk K; Wrona M; Gromadzki M; Mróz MJ; Abe F; Barry R; Bennett DP; Bhattacharya A; Fujii H; Fukui A; Hamada R; Hirao Y; Silva SI; Itow Y; Kirikawa R; Koshimoto N; Matsubara Y; Miyazaki S; Muraki Y; Olmschenk G; Ranc C; Rattenbury NJ; Satoh Y; Sumi T; Suzuki D; Tomoyoshi M; Tristram PJ; Vandorou A; Yama H; Yamashita KAims. We undertake a project to reexamine microlensing data gathered from high-cadence surveys. The aim of the project is to reinvestigate lensing events whose light curves exhibit intricate anomaly features that are associated with caustics, but lack prior proposed models that would explain these features. Methods. Through detailed reanalyses considering higher-order effects, we determined that it is vital to account for the orbital motions of lenses to accurately explain the anomaly features observed in the light curves of the lensing events OGLE-2018-BLG-0971, MOA-2023-BLG-065, and OGLE-2023-BLG-0136. Results. We estimated the masses and distances to the lenses by conducting Bayesian analyses using the lensing parameters of the newly found lensing solutions. These analyses showed that the lenses of the events OGLE-2018-BLG-0971 and MOA-2023-BLG-065 are binaries composed of M dwarfs, while the lens of OGLE-2023-BLG-0136 likely is a binary composed of an early K-dwarf primary and a late M-dwarf companion. For all lensing events, the probability that the lens resides in the bulge is considerably higher than that it is located in the disk.
- ItemProbable brown dwarf companions detected in binary microlensing events during the 2018- 2020 seasons of the KMTNet survey(EDP Sciences, 2023-07-04) Han C; Jung YK; Kim D; Gould A; Bozza V; Bond IA; Chung S-J; Albrow MD; Hwang K-H; Ryu Y-H; Shin I-G; Shvartzvald Y; Yang H; Zang W; Cha S-M; Kim D-J; Kim H-W; Kim S-L; Lee C-U; Lee D-J; Yee JC; Lee Y; Park B-G; Pogge RW; Abe F; Barry R; Bennett DP; Bhattacharya A; Fujii H; Fukui A; Hirao Y; Silva SI; Kirikawa R; Kondo I; Koshimoto N; Matsubara Y; Matsumoto S; Miyazaki S; Muraki Y; Okamura A; Olmschenk G; Ranc C; Rattenbury NJ; Satoh Y; Sumi T; Suzuki D; Toda T; Tristram PJ; Vandorou A; Yama H; Itow YAims. We inspect the microlensing data of the KMTNet survey collected during the 2018-2020 seasons in order to find lensing events produced by binaries with brown dwarf (BD) companions. Methods. In order to pick out binary-lens events with candidate BD lens companions, we conducted systematic analyses of all anomalous lensing events observed during the seasons from 2018 to 2020. By applying a selection criterion of mass ratio between the lens components of 0.03 q 0.1, we identify four binary-lens events with candidate BD companions, namely KMT-2018-BLG-0321, KMT-2018-BLG-0885, KMT-2019-BLG-0297, and KMT-2019-BLG-0335. For the individual events, we present interpretations of the lens systems and measure the observables that can be used to constrain the physical lens parameters. Results. The masses of the lens companions estimated from the Bayesian analyses based on the measured observables indicate high probabilities that the lens companions are in the BD mass regime; that is, 59%, 68%, 66%, and 66% for the four respective events.
- ItemSupplement: "an Isolated Mass-gap Black Hole or Neutron Star Detected with Astrometric Microlensing" (2022, ApJL, 933, L23)(IOP Publishing on behalf of the American Astronomical Society, 2022-07-06) Lam CY; Lu JR; Udalski A; Bond I; Bennett DP; Skowron J; Mróz P; Poleski R; Sumi T; Szymański MK; Kozłowski S; Pietrukowicz P; Soszyński I; Ulaczyk K; Wyrzykowski Ł; Miyazaki S; Suzuki D; Koshimoto N; Rattenbury NJ; Hosek Jr MW; Abe F; Barry R; Bhattacharya A; Fukui A; Fujii H; Hirao Y; Itow Y; Kirikawa R; Kondo I; Matsubara Y; Matsumoto S; Muraki Y; Olmschenk G; Ranc C; Okamura A; Satoh Y; Silva SI; Toda T; Tristram PJ; Vandorou A; Yama H; Abrams NS; Agarwal S; Rose S; Terry SKThis supplement provides supporting material for Lam et al. We briefly summarize past gravitational microlensing searches for black holes (BHs) and present details of the observations, analysis, and modeling of five BH candidates observed with both ground-based photometric microlensing surveys and Hubble Space Telescope astrometry and photometry. We present detailed results for four of the five candidates that show no or low probability for the lens to be a BH. In these cases, the lens masses are <2 M ⊙, and two of the four are likely white dwarfs or neutron stars. We also present detailed methods for comparing the full sample of five candidates to theoretical expectations of the number of BHs in the Milky Way ( 1/4108).
- ItemSystematic KMTNet Planetary Anomaly Search. II. Six New q < 2 × 10−4 Mass-ratio Planets(IOP Publishing on behalf of the American Astronomical Society, 2022-02-01) Hwang K-H; Zang W; Gould A; Udalski A; Bond IA; Yang H; Mao S; Albrow MD; Chung S-J; Han C; Jung YK; Ryu Y-H; Shin I-G; Shvartzvald Y; Yee JC; Cha S-M; Kim D-J; Kim H-W; Kim S-L; Lee C-U; Lee D-J; Lee Y; Park B-G; Pogge R; Mróz P; Poleski R; Skowron J; Szymański MK; Soszyński I; Pietrukowicz P; Kozłowski S; Ulaczyk K; Rybicki KA; Iwanek P; Wrona M; Gromadzki M; Abe F; Barry R; Bennett DP; Bhattacharya A; Fujii H; Fukui A; Hirao Y; Itow Y; Kirikawa R; Kondo I; Koshimoto N; Munford B; Matsubara Y; Miyazaki S; Muraki Y; Olmschenk G; Ranc C; Rattenbury NJ; Satoh YK; Shoji H; Silva SI; Sumi T; Suzuki D; Tristram PJ; Yonehara A; Zhang X; Zhu W; Penny MT; Fouqué PWe apply the automated AnomalyFinder algorithm of Paper I to 2018-2019 light curves from the ≃13 deg2 covered by the six KMTNet prime fields, with cadences Γ ≥ 2 hr-1. We find a total of 11 planets with mass ratios q < 2 × 10-4, including 6 newly discovered planets, 1 planet that was reported in Paper I, and recovery of 4 previously discovered planets. One of the new planets, OGLE-2018-BLG-0977Lb, is in a planetary caustic event, while the other five (OGLE-2018-BLG-0506Lb, OGLE-2018-BLG-0516Lb, OGLE-2019-BLG-1492Lb, KMT-2019-BLG-0253, and KMT-2019-BLG-0953) are revealed by a "dip"in the light curve as the source crosses the host-planet axis on the opposite side of the planet. These subtle signals were missed in previous by-eye searches. The planet-host separations (scaled to the Einstein radius), s, and planet-host mass ratios, q, are, respectively, (s, q × 105) = (0.88, 4.1), (0.96 ± 0.10, 8.3), (0.94 ± 0.07, 13), (0.97 ± 0.07, 18), (0.97 ± 0.04, 4.1), and (0.74, 18), where the "± "indicates a discrete degeneracy. The 11 planets are spread out over the range . Together with the two planets previously reported with q ∼ 10-5 from the 2018-2019 nonprime KMT fields, this result suggests that planets toward the bottom of this mass-ratio range may be more common than previously believed.
- ItemSystematic KMTNet Planetary Anomaly Search. XI. Complete Sample of 2016 Subprime Field Planets(American Astronomical Society, 2024-06-03) Shin I-G; Yee JC; Zang W; Han C; Yang H; Gould A; Lee C-U; Udalski A; Sumi T; Albrow MD; Chung S-J; Hwang K-H; Jung YK; Ryu Y-H; Shvartzvald Y; Cha S-M; Kim D-J; Kim H-W; Kim S-L; Lee D-J; Lee Y; Park B-G; Pogge RW; Mróz P; Szymański MK; Skowron J; Poleski R; Soszyński I; Pietrukowicz P; Kozłowski S; Rybicki KA; Iwanek P; Ulaczyk K; Wrona M; Gromadzki M; Abe F; Bando K; Barry R; Bennett DP; Bhattacharya A; Bond IA; Fujii H; Fukui A; Hamada R; Hamada S; Hamasaki N; Hirao Y; Silva SI; Itow Y; Kirikawa R; Koshimoto N; Matsubara Y; Miyazaki S; Muraki Y; Nagai T; Nunota K; Olmschenk G; Ranc C; Rattenbury NJ; Satoh Y; Suzuki D; Tomoyoshi M; Tristram PJ; Vandorou A; Yama H; Yamashita KFollowing Shin et al. (2023b), which is a part of the “Systematic KMTNet Planetary Anomaly Search” series (i.e., a search for planets in the 2016 KMTNet prime fields), we conduct a systematic search of the 2016 KMTNet subprime fields using a semi-machine-based algorithm to identify hidden anomalous events missed by the conventional by-eye search. We find four new planets and seven planet candidates that were buried in the KMTNet archive. The new planets are OGLE-2016-BLG-1598Lb, OGLE-2016-BLG-1800Lb, MOA-2016-BLG-526Lb, and KMT-2016-BLG-2321Lb, which show typical properties of microlensing planets, i.e., giant planets orbit M-dwarf host stars beyond their snow lines. For the planet candidates, we find planet/binary or 2L1S/1L2S degeneracies, which are an obstacle to firmly claiming planet detections. By combining the results of Shin et al. (2023b) and this work, we find a total of nine hidden planets, which is about half the number of planets discovered by eye in 2016. With this work, we have met the goal of the systematic search series for 2016, which is to build a complete microlensing planet sample. We also show that our systematic searches significantly contribute to completing the planet sample, especially for planet/host mass ratios smaller than 10−3, which were incomplete in previous by-eye searches of the KMTNet archive.
- ItemSystematic KMTNet planetary anomaly search: V. Complete sample of 2018 prime-field(EDP Sciences, 2022-08-08) Gould A; Han C; Zang W; Yang H; Hwang K-H; Udalski A; Bond IA; Albrow MD; Chung S-J; Jung YK; Ryu Y-H; Shin I-G; Shvartzvald Y; Yee JC; Cha S-M; Kim D-J; Kim H-W; Kim S-L; Lee C-U; Lee D-J; Lee Y; Park B-G; Pogge RW; Mróz P; Szymanski MK; Skowron J; Poleski R; Soszyński I; Pietrukowicz P; Kozłowski S; Ulaczyk K; Rybicki KA; Iwanek P; Wrona M; Abe F; Barry R; Bennett DP; Bhattacharya A; Fujii H; Fukui A; Hirao Y; Silva SI; Kirikawa R; Kondo I; Koshimoto N; Matsubara Y; Matsumoto S; Miyazaki S; Muraki Y; Okamura A; Olmschenk G; Ranc C; Rattenbury NJ; Satoh Y; Sumi T; Suzuki D; Toda T; Tristram PJ; Vandorou A; Yama H; Beichman C; Bryden G; Novati SC; Gaudi BS; Henderson CB; Penny MT; Jacklin S; Stassun KGWe complete the analysis of all 2018 prime-field microlensing planets identified by the Korea Microlensing Telescope Network (KMTNet) Anomaly Finder. Among the ten previously unpublished events with clear planetary solutions, eight are either unambiguously planetary or are very likely to be planetary in nature: OGLE-2018-BLG-1126, KMT-2018-BLG-2004, OGLE-2018-BLG-1647, OGLE-2018-BLG-1367, OGLE-2018-BLG-1544, OGLE-2018-BLG-0932, OGLE-2018-BLG-1212, and KMT-2018-BLG-2718. Combined with the four previously published new Anomaly Finder events and 12 previously published (or in preparation) planets that were discovered by eye, this makes a total of 24 2018 prime-field planets discovered or recovered by Anomaly Finder. Together with a paper in preparation on 2018 subprime planets, this work lays the basis for the first statistical analysis of the planet mass-ratio function based on planets identified in KMTNet data. By systematically applying the heuristic analysis to each event, we identified the small modification in their formalism that is needed to unify the so-called close-wide and inner-outer degeneracies.
- ItemSystematic reanalysis of KMTNet microlensing events, paper I: Updates of the photometry pipeline and a new planet candidate(Oxford University Press on behalf of the Royal Astronomical Society., 2024-02-01) Yang H; Yee JC; Hwang K-H; Qian Q; Bond IA; Gould A; Hu Z; Zhang J; Mao S; Zhu W; Albrow MD; Chung S-J; Kim S-L; Park B-G; Han C; Jung YK; Ryu Y-H; Shin I-G; Shvartzvald Y; Cha S-M; Kim D-J; Kim H-W; Lee C-U; Lee D-J; Lee Y; Pogge RW; Zang W; Abe F; Barry R; Bennett DP; Bhattacharya A; Donachie M; Fujii H; Fukui A; Hirao Y; Itow Y; Kirikawa R; Kondo I; Koshimoto N; Silva SI; Li MCA; Matsubara Y; Muraki Y; Suzuki D; Tristram PJ; Yonehara A; Ranc C; Miyazaki S; Olmschenk G; Rattenbury NJ; Satoh Y; Shoji H; Sumi T; Tanaka Y; Yamawaki TIn this work, we update and develop algorithms for KMTNet tender-love care (TLC) photometry in order to create a new, mostly automated, TLC pipeline. We then start a project to systematically apply the new TLC pipeline to the historic KMTNet microlensing events, and search for buried planetary signals. We report the discovery of such a planet candidate in the microlensing event MOA-2019-BLG-421/KMT-2019-BLG-2991. The anomalous signal can be explained by either a planet around the lens star or the orbital motion of the source star. For the planetary interpretation, despite many degenerate solutions, the planet is most likely to be a Jovian planet orbiting an M or K dwarf, which is a typical microlensing planet. The discovery proves that the project can indeed increase the sensitivity of historic events and find previously undiscovered signals.
- ItemThree sub-Jovian-mass microlensing planets: MOA-2022-BLG-563Lb, KMT-2023-BLG-0469Lb, and KMT-2023-BLG-0735Lb(The European Southern Observatory (ESO) for EDP Sciences, 2024-03-12) Han C; Jung YK; Bond IA; Gould A; Albrow MD; Chung S-J; Hwang K-H; Lee C-U; Ryu Y-H; Shin I-G; Shvartzvald Y; Yang H; Yee JC; Zang W; Cha S-M; Kim D; Kim D-J; Kim S-L; Lee D-J; Lee Y; Park B-G; Pogge RW; Abe F; Barry R; Bennett DP; Bhattacharya A; Fujii H; Fukui A; Hamada R; Hirao Y; Silva SI; Itow Y; Kirikawa R; Koshimoto N; Matsubara Y; Miyazaki S; Muraki Y; Olmschenk G; Ranc C; Rattenbury NJ; Satoh Y; Sumi T; Suzuki D; Tomoyoshi M; Tristram PJ; Vandorou A; Yama H; Yamashita KAims. We analyze the anomalies appearing in the light curves of the three microlensing events MOA-2022-BLG-563, KMT-2023BLG-0469, and KMT-2023-BLG-0735. The anomalies exhibit common short-term dip features that appear near the peak. Methods. From the detailed analyses of the light curves, we find that the anomalies were produced by planets accompanied by the lenses of the events. For all three events, the estimated mass ratios between the planet and host are on the order of 10−4: q ∼ 8 × 10−4 for MOA-2022-BLG-563L, q ∼ 2.5 × 10−4 for KMT-2023-BLG-0469L, and q ∼ 1.9 × 10−4 for KMT-2023-BLG-0735L. The interpretations of the anomalies are subject to a common inner-outer degeneracy, which causes ambiguity when estimating the projected planet-host separation. Results. We estimated the planet mass, Mp, host mass, Mh, and distance, DL, to the planetary system by conducting Bayesian analyses using the observables of the events. The estimated physical parameters of the planetary systems are (Mh/M, Mp/MJ, DL/kpc) = (0.48+−00.3630, 0.40+−00.3125, 6.53+−11.1257) for MOA-2022-BLG-563L, (0.47+−00.3526, 0.124+−00.092067, 7.07−+11.1903) for KMT-2023-BLG-0469L, and (0.62+−00.3435, 0.125+−00.068070, 6.26+−11.2767) for KMT-2023-BLG-0735L. According to the estimated parameters, all planets are cold planets with projected separations that are greater than the snow lines of the planetary systems, they have masses that lie between the masses of Uranus and Jupiter of the Solar System, and the hosts of the planets are main-sequence stars that are less massive than the Sun. In all cases, the planetary systems are more likely to be in the bulge with probabilities Pbulge = 64%, 73%, and 56% for MOA-2022-BLG-563, KMT-2023-BLG-0469, and KMT-2023-BLG-0735, respectively.