Browsing by Author "Semakula J"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemApplication of machine learning algorithms to predict body condition score from liveweight records of mature romney ewes(1/02/2021) Semakula J; Corner‐thomas RA; Morris ST; Blair HT; Kenyon PRBody condition score (BCS) in sheep (Ovis aries) is a widely used subjective measure of the degree of soft tissue coverage. Body condition score and liveweight are statistically related in ewes; therefore, it was hypothesized that BCS could be accurately predicted from liveweight using machine learning models. Individual ewe liveweight and body condition score data at each stage of the annual cycle (pre‐breeding, pregnancy diagnosis, pre‐lambing and weaning) at 43 to 54 months of age were used. Nine machine learning (ML) algorithms (ordinal logistic regression, multinomial regression, linear discriminant analysis, classification and regression tree, random forest, k‐nearest neighbors, support vector machine, neural networks and gradient boosting decision trees) were applied to predict BCS from a ewe’s current and previous liveweight record. A three class BCS (1.0– 2.0, 2.5–3.5, > 3.5) scale was used due to high‐class imbalance in the five‐scale BCS data. The results showed that using ML to predict ewe BCS at 43 to 54 months of age from current and previous liveweight could be achieved with high accuracy (> 85%) across all stages of the annual cycle. The gradient boosting decision tree algorithm (XGB) was the most efficient for BCS prediction regardless of season. All models had balanced specificity and sensitivity. The findings suggest that there is potential for predicting ewe BCS from liveweight using classification machine learning algorithms.
- ItemPredicting ewe body condition score using adjusted liveweight for conceptus and fleece weight, height at withers, and previous body condition score record(Oxford University Press, 2021-07) Semakula J; Corner-Thomas RA; Morris ST; Blair HT; Kenyon PRThe relationship between ewe body condition score (BCS) and liveweight (LW) has been exploited previously to predict the former from LW, LW-change, and previous BCS records. It was hypothesized that if fleece weight and conceptus-free liveweight and LW-change, and in addition, height at withers were used, the accuracy of current approaches to predicting BCS would be enhanced. Ewes born in 2017 (n = 429) were followed from 8 mo to approximately 42 mo of age in New Zealand. Individual ewe data were collected on LW and BCS at different stages of the annual production cycle (i.e., prebreeding, at pregnancy diagnosis, prelambing, and weaning). Additionally, individual lambing dates, ewe fleece weight, and height at withers data were collected. Linear regression models were fitted to predict current BCS at each ewe age and stage of the annual production cycle using two LW-based models, namely, unadjusted for conceptus weight and fleece weight (LW alone1) and adjusted (LW alone2) models. Furthermore, another two models based on a combination of LW, LW-change, previous BCS, and height at withers (combined models), namely, unadjusted (combined1) and adjusted for conceptus and fleece weight (combined2), were fitted. Combined models gave more accurate (with lower root mean square error: RMSE) BCS predictions than models based on LW records alone. However, applying adjusted models did not improve BCS prediction accuracy (or reduce RMSE) or improve model goodness of fit (R2) (P > 0.05). Furthermore, in all models, both LW-alone and combined models a great proportion of variability in BCS, could not be accounted for (0.25 ≥ R2 ≥ 0.83) and there was substantial prediction error (0.33 BCS ≥ RMSE ≥ 0.49 BCS) across age groups and stages of the annual production cycle and over time (years). Therefore, using additional ewe data which allowed for the correction of LW for fleece and conceptus weight and using height at withers as an additional predictor did not improve model accuracy. In fact, the findings suggest that adjusting LW data for conceptus and fleece weight offer no additional value to the BCS prediction models based on LW. Therefore, additional research to identify alternative methodologies to account for individual animal variability is still needed.
- ItemThe effect of herbage availability and season of year on the rate of liveweight loss during weighing of fasting ewe lambs(1/02/2021) Semakula J; Corner-Thomas RA; Morris ST; Blair HT; Kenyon PRSheep (Ovis aries) liveweight and liveweight change can contain errors when collection procedures are not standardized, or when there are varying time delays between removal from grazing and weighing. A two-stage study was conducted to determine the effect of herbage availability and season of year on the rate of liveweight loss during fasting and to develop and validate correction equations applied to sets of delayed liveweights collected under commercial conditions. Results showed that ewe lambs offered the Low herbage availability lost up to 1.7 kg and those offered the Medium or High herbage availability lost 2.4 kg during 8 h of delayed weighing without access to feed or drinking water. The rate of liveweight loss varied by season, herbage availability and farm (p < 0.05). Applying correction equations on matching liveweight data collected under similar conditions, provided more accurate estimates (33-55%) of without delay liveweight than using the delayed liveweight. In conclusion, a short-term delay prior to weighing commonly associated with practical handling operations significantly reduced the liveweight recorded for individual sheep. Using delayed liveweights on commercial farms and in research can have significant consequences for management practices and research results globally, therefore, liveweight data should be collected without delay. However, when this is not feasible delayed liveweights should be corrected, and in the absence of locally formulated correction equations, the ones presented in this paper could be used.
- ItemThe effect of herbage availability, pregnancy stage and rank on the rate of liveweight loss during fasting in ewes(1/06/2021) Semakula J; Corner-Thomas RA; Morris ST; Blair HT; Kenyon PRSheep liveweight and liveweight change are vital tools both for commercial and research farm management. However, they can be unreliable when collection procedures are not standardized or when there are varying time delays between sheep removal from grazing and weighing. This study had two stages with different objectives: (1) A liveweight loss study to determine the effect of herbage availability (Low and High) on the rate of liveweight loss of ewes at different pregnancy stages (approximately 100 days of pregnancy: P100 and 130 days: P130) and ranks (single and twin); (2) A follow-up liveweight loss study to develop and validate correction equations for delayed liveweights by applying them to data sets collected under commercial conditions. Results from each stage showed that the rate of liveweight loss varied by herbage availability and stage of pregnancy (p < 0.05) but not pregnancy-rank (p > 0.05). Further, the rate of liveweight loss differed by farm (p < 0.05). Applying liveweight correction equations increased the accuracy of without delay liveweight estimates in P100 ewes by 56% and 45% for single-bearing and twin-bearing ewes, respectively, when offered the Low-level diet. In ewes offered the High-level diet, accuracies of without delay liveweight estimates were increased by 53% and 67% for single-bearing and twin-bearing ewes, respectively. Among P130 ewes, accuracy was increased by 43% and 37% for single-bearing and twin-bearing ewes, respectively, when offered the Low herbage level and by 60% and 50% for single-bearing and twin-bearing ewes, respectively, when offered the High herbage level. In conclusion, a short-term delay of up to 8 hours prior to weighing, which is commonly associated with practical handling operations, significantly reduced the liveweight recorded for individual sheep. Using delayed liveweights on commercial farms and in research can have consequences for management practices and research results; thus, liveweight data should be collected without delay. However, when this is not feasible, delayed ewe liveweights should be corrected and, in the absence of locally devised correction equations, the ones generated in the current study could be applied on farms with similar management conditions and herbage type.