Browsing by Author "Sabrina F"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- ItemAE-MLP: A Hybrid Deep Learning Approach for DDoS Detection and Classification(IEEE, 2021-10-27) Wei Y; Jang-Jaccard J; Sabrina F; Singh A; Xu W; Camtepe S; Oliva DDistributed Denial-of-Service (DDoS) attacks are increasing as the demand for Internet connectivity massively grows in recent years. Conventional shallow machine learning-based techniques for DDoS attack classification tend to be ineffective when the volume and features of network traffic, potentially carry malicious DDoS payloads, increase exponentially as they cannot extract high importance features automatically. To address this concern, we propose a hybrid approach named AE-MLP that combines two deep learning-based models for effective DDoS attack detection and classification. The Autoencoder (AE) part of our proposed model provides an effective feature extraction that finds the most relevant feature sets automatically without human intervention (e.g., knowledge of cybersecurity professionals). The Multi-layer Perceptron Network (MLP) part of our proposed model uses the compressed and reduced feature sets produced by the AE as inputs and classifies the attacks into different DDoS attack types to overcome the performance overhead and bias associated with processing large feature sets with noise (i.e., unnecessary feature values). Our experimental results, obtained through comprehensive and extensive experiments on different aspects of performance on the CICDDoS2019 dataset, demonstrate both a very high and robust accuracy rate and F1-score that exceed 98% which also outperformed the performance of many similar methods. This shows that our proposed model can be used as an effective DDoS defense tool against the growing number of DDoS attacks.
- ItemArtificial Intelligence-Enabled DDoS Detection for Blockchain-Based Smart Transport Systems.(MDPI (Basel, Switzerland), 2021-12-22) Liu T; Sabrina F; Jang-Jaccard J; Xu W; Wei YA smart public transport system is expected to be an integral part of our human lives to improve our mobility and reduce the effect of our carbon footprint. The safety and ongoing maintenance of the smart public transport system from cyberattacks are vitally important. To provide more comprehensive protection against potential cyberattacks, we propose a novel approach that combines blockchain technology and a deep learning method that can better protect the smart public transport system. By the creation of signed and verified blockchain blocks and chaining of hashed blocks, the blockchain in our proposal can withstand unauthorized integrity attack that tries to forge sensitive transport maintenance data and transactions associated with it. A hybrid deep learning-based method, which combines autoencoder (AE) and multi-layer perceptron (MLP), in our proposal can effectively detect distributed denial of service (DDoS) attempts that can halt or block the urgent and critical exchange of transport maintenance data across the stakeholders. The experimental results of the hybrid deep learning evaluated on three different datasets (i.e., CICDDoS2019, CIC-IDS2017, and BoT-IoT) show that our deep learning model is effective to detect a wide range of DDoS attacks achieving more than 95% F1-score across all three datasets in average. The comparison of our approach with other similar methods confirms that our approach covers a more comprehensive range of security properties for the smart public transport system.
- ItemEntitlement-Based Access Control for Smart Cities Using Blockchain(MDPI (Basel, Switzerland), 2021-08-04) Sabrina F; Jang-Jaccard J; Dai H-N; Wu J; Wang HSmart cities use the Internet of Things (IoT) devices such as connected sensors, lights, and meters to collect and analyze data to improve infrastructure, public utilities, and services. However, the true potential of smart cities cannot be leveraged without addressing many security concerns. In particular, there is a significant challenge for provisioning a reliable access control solution to share IoT data among various users across organizations. We present a novel entitlement-based blockchain-enabled access control architecture that can be used for smart cities (and for any ap-plication domains that require large-scale IoT deployments). Our proposed entitlement-based access control model is flexible as it facilitates a resource owner to safely delegate access rights to any entities beyond the trust boundary of an organization. The detailed design and implementation on Ethereum blockchain along with a qualitative evaluation of the security and access control aspects of the proposed scheme are presented in the paper. The experimental results from private Ethereum test networks demonstrate that our proposal can be easily implemented with low latency. This validates that our proposal is applicable to use in the real world IoT environments.
- ItemImproved Bidirectional GAN-Based Approach for Network Intrusion Detection Using One-Class Classifier(MDPI (Basel, Switzerland), 2022-06-01) Xu W; Jang-Jaccard J; Liu T; Sabrina F; Kwak JExisting generative adversarial networks (GANs), primarily used for creating fake image samples from natural images, demand a strong dependence (i.e., the training strategy of the generators and the discriminators require to be in sync) for the generators to produce as realistic fake samples that can “fool” the discriminators. We argue that this strong dependency required for GAN training on images does not necessarily work for GAN models for network intrusion detection tasks. This is because the network intrusion inputs have a simpler feature structure such as relatively low-dimension, discrete feature values, and smaller input size compared to the existing GAN-based anomaly detection tasks proposed on images. To address this issue, we propose a new Bidirectional GAN (Bi-GAN) model that is better equipped for network intrusion detection with reduced overheads involved in excessive training. In our proposed method, the training iteration of the generator (and accordingly the encoder) is increased separate from the training of the discriminator until it satisfies the condition associated with the cross-entropy loss. Our empirical results show that this proposed training strategy greatly improves the performance of both the generator and the discriminator even in the presence of imbalanced classes. In addition, our model offers a new construct of a one-class classifier using the trained encoder–discriminator. The one-class classifier detects anomalous network traffic based on binary classification results instead of calculating expensive and complex anomaly scores (or thresholds). Our experimental result illustrates that our proposed method is highly effective to be used in network intrusion detection tasks and outperforms other similar generative methods on two datasets: NSL-KDD and CIC-DDoS2019 datasets.
- ItemImproving Performance of Autoencoder-Based Network Anomaly Detection on NSL-KDD Dataset(IEEE, 2021-09-29) Xu W; Jang-Jaccard J; Singh A; Wei Y; Sabrina F; Ji ZNetwork anomaly detection plays a crucial role as it provides an effective mechanism to block or stop cyberattacks. With the recent advancement of Artificial Intelligence (AI), there has been a number of Autoencoder (AE) based deep learning approaches for network anomaly detection to improve our posture towards network security. The performance of existing state-of-the-art AE models used for network anomaly detection varies without offering a holistic approach to understand the critical impacts of the core set of important performance indicators of AE models and the detection accuracy. In this study, we propose a novel 5-layer autoencoder (AE)-based model better suited for network anomaly detection tasks. Our proposal is based on the results we obtained through an extensive and rigorous investigation of several performance indicators involved in an AE model. In our proposed model, we use a new data pre-processing methodology that transforms and removes the most affected outliers from the input samples to reduce model bias caused by data imbalance across different data types in the feature set. Our proposed model utilizes the most effective reconstruction error function which plays an essential role for the model to decide whether a network traffic sample is normal or anomalous. These sets of innovative approaches and the optimal model architecture allow our model to be better equipped for feature learning and dimension reduction thus producing better detection accuracy as well as f1-score. We evaluated our proposed model on the NSL-KDD dataset which outperformed other similar methods by achieving the highest accuracy and f1-score at 90.61% and 92.26% respectively in detection.