Browsing by Author "Roberts M"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemA behaviour and disease transmission model: incorporating the Health Belief Model for human behaviour into a simple transmission model.(The Royal Society, 2024-06-05) Ryan M; Brindal E; Roberts M; Hickson RIThe health and economic impacts of infectious diseases such as COVID-19 affect all levels of a community from the individual to the governing bodies. However, the spread of an infectious disease is intricately linked to the behaviour of the people within a community since crowd behaviour affects individual human behaviour, while human behaviour affects infection spread, and infection spread affects human behaviour. Capturing these feedback loops of behaviour and infection is a well-known challenge in infectious disease modelling. Here, we investigate the interface of behavioural science theory and infectious disease modelling to explore behaviour and disease (BaD) transmission models. Specifically, we incorporate a visible protective behaviour into the susceptible-infectious-recovered-susceptible (SIRS) transmission model using the socio-psychological Health Belief Model to motivate behavioural uptake and abandonment. We characterize the mathematical thresholds for BaD emergence in the BaD SIRS model and the feasible steady states. We also explore, under different infectious disease scenarios, the effects of a fully protective behaviour on long-term disease prevalence in a community, and describe how BaD modelling can investigate non-pharmaceutical interventions that target-specific components of the Health Belief Model. This transdisciplinary BaD modelling approach may reduce the health and economic impacts of future epidemics.
- ItemChallenges in modelling the dynamics of infectious diseases at the wildlife–human interface(Elsevier B.V, 2021-12) Roberts M; Dobson A; Restif O; Wells KThe Covid-19 pandemic is of zoonotic origin, and many other emerging infections of humans have their origin in an animal host population. We review the challenges involved in modelling the dynamics of wildlife–human interfaces governing infectious disease emergence and spread. We argue that we need a better understanding of the dynamic nature of such interfaces, the underpinning diversity of pathogens and host–pathogen association networks, and the scales and frequencies at which environmental conditions enable spillover and host shifting from animals to humans to occur. The major drivers of the emergence of zoonoses are anthropogenic, including the global change in climate and land use. These, and other ecological processes pose challenges that must be overcome to counterbalance pandemic risk. The development of more detailed and nuanced models will provide better tools for analysing and understanding infectious disease emergence and spread.
- ItemIndirect interaction between an endemic and an invading pathogen: A case study of Plasmodium and Usutu virus dynamics in a shared bird host population.(Elsevier B.V., 2024-04-18) Dimas Martins A; Roberts M; Ten Bosch Q; Heesterbeek HInfectious disease agents can influence each other's dynamics in shared host populations. We consider such influence for two mosquito-borne infections where one pathogen is endemic at the time that a second pathogen invades. We regard a setting where the vector has a bias towards biting host individuals infected with the endemic pathogen and where there is a cost to co-infected hosts. As a motivating case study, we regard Plasmodium spp., that cause avian malaria, as the endemic pathogen, and Usutu virus (USUV) as the invading pathogen. Hosts with malaria attract more mosquitoes compared to susceptible hosts, a phenomenon named vector bias. The possible trade-off between the vector-bias effect and the co-infection mortality is studied using a compartmental epidemic model. We focus first on the basic reproduction number R0 for Usutu virus invading into a malaria-endemic population, and then explore the long-term dynamics of both pathogens once Usutu virus has become established. We find that the vector bias facilitates the introduction of malaria into a susceptible population, as well as the introduction of Usutu in a malaria-endemic population. In the long term, however, both a vector bias and co-infection mortality lead to a decrease in the number of individuals infected with either pathogen, suggesting that avian malaria is unlikely to be a promoter of Usutu invasion. This proposed approach is general and allows for new insights into other negative associations between endemic and invading vector-borne pathogens.