Browsing by Author "Raudsepp A"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemModeling multiple duplex DNA attachments in a force-extension experiment(Cell Press, 2022-03-09) Raudsepp A; Williams MAK; Jameson GB; Enderlein JOptical tweezers-based DNA stretching often relies on tethering a single end-activated DNA molecule between optically manipulated end-binding beads. Measurement success can depend on DNA concentration. At lower DNA concentrations tethering is less common, and many trials may be required to observe a single-molecule stretch. At higher DNA concentrations tethering is more common; however, the resulting force-extensions observed are more complex and may vary from measurement to measurement. Typically these more complex results are attributed to the formation of multiple tethers between the beads; however, to date there does not appear to have been a critical examination of this hypothesis or the potential usefulness of such data. Here we examine stretches at a higher DNA concentration and use analysis and simulation to show how the more complex force-extensions observed can be understood in terms of multiple DNA attachments.
- ItemOptical microlever assisted DNA stretching(Optica Publishing Group, 2021-08-02) Andrew P-K; Raudsepp A; Fan D; Staufer U; Williams MAK; Avci EOptical microrobotics is an emerging field that has the potential to improve upon current optical tweezer studies through avenues such as limiting the exposure of biological molecules of interest to laser radiation and overcoming the current limitations of low forces and unwanted interactions between nearby optical traps. However, optical microrobotics has been historically limited to rigid, single-body end-effectors rather than even simple machines, limiting the tasks that can be performed. Additionally, while multi-body machines such as microlevers exist in the literature, they have not yet been successfully demonstrated as tools for biological studies, such as molecule stretching. In this work we have taken a step towards moving the field forward by developing two types of microlever, produced using two-photon absorption polymerisation, to perform the first lever-assisted stretches of double-stranded DNA. The aim of the work is to provide a proof of concept for using optical micromachines for single molecule studies. Both styles of microlevers were successfully used to stretch single duplexes of DNA, and the results were analysed with the worm-like chain model to show that they were in good agreement.
- ItemProgress toward Plug-and-Play Polymer Strings for Optical Tweezers Experiments: Concatenation of DNA Using Streptavidin Linkers(American Chemical Society, 2022-02-22) Mohandas N; Kent LM; Raudsepp A; Jameson GB; Williams MAKStreptavidin is a tetrameric protein that is renowned for its strong binding to biotin. The robustness and strength of this noncovalent coupling has led to multitudinous applications of the pairing. Within the streptavidin tetramer, each protein monomer has the potential to specifically bind one biotin-bearing moiety. Herein, by separating various streptavidin species that have had differing numbers of their four potential binding sites blocked, several different types of "linking hub" were obtained, each with a different valency. The identification of these species and the study of the plugging process used to block sites during their preparation were carried out using capillary electrophoresis. Subsequently, a specific species, namely, a trans-divalent linker, in which the two open biotin-binding pockets are approximately opposite one another, was used to concatenate two ∼5 kb pieces of biotin-terminated double-stranded DNA. Following the incubation of this DNA with the prepared linker, a fraction of ∼10 kb strings was identified using gel electrophoresis. Finally, these concatenated DNA strings were stretched in an optical tweezer experiment, demonstrating the potential of the methodology for coupling and extending molecules for use in single-molecule biophysical experiments.