Browsing by Author "Pryce JE"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemAllele-specific binding variants causing ChIP-seq peak height of histone modification are not enriched in expression QTL annotations.(BioMed Central Ltd, 2024-06-27) Ghoreishifar M; Chamberlain AJ; Xiang R; Prowse-Wilkins CP; Lopdell TJ; Littlejohn MD; Pryce JE; Goddard MEBACKGROUND: Genome sequence variants affecting complex traits (quantitative trait loci, QTL) are enriched in functional regions of the genome, such as those marked by certain histone modifications. These variants are believed to influence gene expression. However, due to the linkage disequilibrium among nearby variants, pinpointing the precise location of QTL is challenging. We aimed to identify allele-specific binding (ASB) QTL (asbQTL) that cause variation in the level of histone modification, as measured by the height of peaks assayed by ChIP-seq (chromatin immunoprecipitation sequencing). We identified DNA sequences that predict the difference between alleles in ChIP-seq peak height in H3K4me3 and H3K27ac histone modifications in the mammary glands of cows. RESULTS: We used a gapped k-mer support vector machine, a novel best linear unbiased prediction model, and a multiple linear regression model that combines the other two approaches to predict variant impacts on peak height. For each method, a subset of 1000 sites with the highest magnitude of predicted ASB was considered as candidate asbQTL. The accuracy of this prediction was measured by the proportion where the predicted direction matched the observed direction. Prediction accuracy ranged between 0.59 and 0.74, suggesting that these 1000 sites are enriched for asbQTL. Using independent data, we investigated functional enrichment in the candidate asbQTL set and three control groups, including non-causal ASB sites, non-ASB variants under a peak, and SNPs (single nucleotide polymorphisms) not under a peak. For H3K4me3, a higher proportion of the candidate asbQTL were confirmed as ASB when compared to the non-causal ASB sites (P < 0.01). However, these candidate asbQTL did not enrich for the other annotations, including expression QTL (eQTL), allele-specific expression QTL (aseQTL) and sites conserved across mammals (P > 0.05). CONCLUSIONS: We identified putatively causal sites for asbQTL using the DNA sequence surrounding these sites. Our results suggest that many sites influencing histone modifications may not directly affect gene expression. However, it is important to acknowledge that distinguishing between putative causal ASB sites and other non-causal ASB sites in high linkage disequilibrium with the causal sites regarding their impact on gene expression may be challenging due to limitations in statistical power.
- ItemEstimating Heritabilities and Breeding Values From Censored Phenotypes Using a Data Augmentation Approach.(Frontiers Media S.A., 2022-07-25) Stephen MA; Cheng H; Pryce JE; Burke CR; Steele NM; Phyn CVC; Garrick DJ; Cánovas ATime-dependent traits are often subject to censorship, where instead of precise phenotypes, only a lower and/or upper bound can be established for some of the individuals. Censorship reduces the precision of phenotypes but can represent compromise between measurement cost and animal ethics considerations. This compromise is particularly relevant for genetic evaluation because phenotyping initiatives often involve thousands of individuals. This research aimed to: 1) demonstrate a data augmentation approach for analysing censored phenotypes, and 2) quantify the implications of phenotype censorship on estimation of heritabilities and predictions of breeding values. First, we simulated uncensored phenotypes, representing fine-scale "age at puberty" for each individual in a population of some 5,000 animals across 50 herds. Analysis of these uncensored phenotypes provided a gold-standard control. We then produced seven "test" phenotypes by superimposing varying degrees of left, interval, and/or right censorship, as if herds were measured on only one, two or three occasions, with a binary measure categorized for animals at each visit (either pre or post pubertal). We demonstrated that our estimates of heritabilities and predictions of breeding values obtained using a data augmentation approach were remarkably robust to phenotype censorship. Our results have important practical implications for measuring time-dependent traits for genetic evaluation. More specifically, we suggest that data collection can be designed with relatively infrequent repeated measures, thereby reducing costs and increasing feasibility across large numbers of animals.
- ItemSequence-based genome-wide association study of individual milk mid-infrared wavenumbers in mixed-breed dairy cattle(BioMed Central Ltd, 2021-07-20) Tiplady KM; Lopdell TJ; Reynolds E; Sherlock RG; Keehan M; Johnson TJJ; Pryce JE; Davis SR; Spelman RJ; Harris BL; Garrick DJ; Littlejohn MDBACKGROUND: Fourier-transform mid-infrared (FT-MIR) spectroscopy provides a high-throughput and inexpensive method for predicting milk composition and other novel traits from milk samples. While there have been many genome-wide association studies (GWAS) conducted on FT-MIR predicted traits, there have been few GWAS for individual FT-MIR wavenumbers. Using imputed whole-genome sequence for 38,085 mixed-breed New Zealand dairy cattle, we conducted GWAS on 895 individual FT-MIR wavenumber phenotypes, and assessed the value of these direct phenotypes for identifying candidate causal genes and variants, and improving our understanding of the physico-chemical properties of milk. RESULTS: Separate GWAS conducted for each of 895 individual FT-MIR wavenumber phenotypes, identified 450 1-Mbp genomic regions with significant FT-MIR wavenumber QTL, compared to 246 1-Mbp genomic regions with QTL identified for FT-MIR predicted milk composition traits. Use of mammary RNA-seq data and gene annotation information identified 38 co-localized and co-segregating expression QTL (eQTL), and 31 protein-sequence mutations for FT-MIR wavenumber phenotypes, the latter including a null mutation in the ABO gene that has a potential role in changing milk oligosaccharide profiles. For the candidate causative genes implicated in these analyses, we examined the strength of association between relevant loci and each wavenumber across the mid-infrared spectrum. This revealed shared association patterns for groups of genomically-distant loci, highlighting clusters of loci linked through their biological roles in lactation and their presumed impacts on the chemical composition of milk. CONCLUSIONS: This study demonstrates the utility of FT-MIR wavenumber phenotypes for improving our understanding of milk composition, presenting a larger number of QTL and putative causative genes and variants than found from FT-MIR predicted composition traits. Examining patterns of significance across the mid-infrared spectrum for loci of interest further highlighted commonalities of association, which likely reflects the physico-chemical properties of milk constituents.