Browsing by Author "Plowright RK"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemBat Flight and Zoonotic Viruses(Centers for Disease Control and Prevention, 2014) O Shea TJ; Cryan PM; Cunningham AA; Fooks AR; Hayman DTS; Luis AD; Peel AJ; Plowright RK; Wood JLNBats are sources of high viral diversity and high-profile zoonotic viruses worldwide. Although apparently not pathogenic in their reservoir hosts, some viruses from bats severely affect other mammals, including humans. Examples include severe acute respiratory syndrome coronaviruses, Ebola and Marburg viruses, and Nipah and Hendra viruses. Factors underlying high viral diversity in bats are the subject of speculation. We hypothesize that flight, a factor common to all bats but to no other mammals, provides an intensive selective force for coexistence with viral parasites through a daily cycle that elevates metabolism and body temperature analogous to the febrile response in other mammals. On an evolutionary scale, this host–virus interaction might have resulted in the large diversity of zoonotic viruses in bats, possibly through bat viruses adapting to be more tolerant of the fever response and less virulent to their natural hosts.
- ItemBody mass and hibernation microclimate may predict bat susceptibility to white-nose syndrome(John Wiley and Sons, Ltd, 7/01/2021) Haase CG; Fuller NW; Dzal YA; Hranac CR; Hayman DTS; Lausen CL; Silas KA; Olson SH; Plowright RKIn multihost disease systems, differences in mortality between species may reflect variation in host physiology, morphology, and behavior. In systems where the pathogen can persist in the environment, microclimate conditions, and the adaptation of the host to these conditions, may also impact mortality. White-nose syndrome (WNS) is an emerging disease of hibernating bats caused by an environmentally persistent fungus, Pseudogymnoascus destructans. We assessed the effects of body mass, torpid metabolic rate, evaporative water loss, and hibernaculum temperature and water vapor deficit on predicted overwinter survival of bats infected by P. destructans. We used a hibernation energetics model in an individual-based model framework to predict the probability of survival of nine bat species at eight sampling sites across North America. The model predicts time until fat exhaustion as a function of species-specific host characteristics, hibernaculum microclimate, and fungal growth. We fit a linear model to determine relationships with each variable and predicted survival and semipartial correlation coefficients to determine the major drivers in variation in bat survival. We found host body mass and hibernaculum water vapor deficit explained over half of the variation in survival with WNS across species. As previous work on the interplay between host and pathogen physiology and the environment has focused on species with narrow microclimate preferences, our view on this relationship is limited. Our results highlight some key predictors of interspecific survival among western bat species and provide a framework to assess impacts of WNS as the fungus continues to spread into western North America.
- ItemProjecting the compound effects of climate change and white-nose syndrome on North American bat species(Elsevier Inc, 2022-12) McClure ML; Hranac CR; Haase CG; McGinnis S; Dickson BG; Hayman DTS; McGuire LP; Lausen CL; Plowright RK; Fuller N; Olson SHClimate change and disease are threats to biodiversity that may compound and interact with one another in ways that are difficult to predict. White-nose syndrome (WNS), caused by a cold-loving fungus (Pseudogymnoascus destructans), has had devastating impacts on North American hibernating bats, and impact severity has been linked to hibernaculum microclimate conditions. As WNS spreads across the continent and climate conditions change, anticipating these stressors’ combined impacts may improve conservation outcomes for bats. We build on the recent development of winter species distribution models for five North American bat species, which used a hybrid correlative-mechanistic approach to integrate spatially explicit winter survivorship estimates from a bioenergetic model of hibernation physiology. We apply this bioenergetic model given the presence of P. destructans, including parameters capturing its climate-dependent growth as well as its climate-dependent effects on host physiology, under both current climate conditions and scenarios of future climate change. We then update species distribution models with the resulting survivorship estimates to predict changes in winter hibernacula suitability under future conditions. Exposure to P. destructans is generally projected to decrease bats’ winter occurrence probability, but in many areas, changes in climate are projected to lessen the detrimental impacts of WNS. This rescue effect is not predicted for all species or geographies and may arrive too late to benefit many hibernacula. However, our findings offer hope that proactive conservation strategies to minimize other sources of mortality could allow bat populations exposed to P. destructans to persist long enough for conditions to improve.
- ItemThe equine Hendra virus vaccine remains a highly effective preventative measure against infection in horses and humans: 'The imperative to develop a human vaccine for the Hendra virus in Australia'.(2016) Peel AJ; Field HE; Reid PA; Plowright RK; Broder CC; Skerratt LF; Hayman DTS; Restif O; Taylor M; Martin G; Crameri G; Smith I; Baker M; Marsh GA; Barr J; Breed AC; Wood JLN; Dhand N; Toribio J-A; Cunningham AA; Fulton I; Bryden WL; Secombe C; Wang L-F