Browsing by Author "Peterson SW"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemAssociations among Mammary Ultrasound Measurements, Milk Yield of Non-Dairy Ewe Lambs and the Growth of Their Single Lambs(MDPI (Basel, Switzerland), 2021-07-09) Haslin E; Corner-Thomas RA; Kenyon PR; Peterson SW; Morris ST; Blair HTMammary cistern size was positively correlated with milk yield of mature dairy ewes, but the association in ewe lambs is unknown. This experiment aimed to examine the associations between mammary ultrasound measurements and the milk yield of ewe lambs at one year of age and to determine the accuracy of using maternal mammary ultrasound to predict single lamb growth rates. Single-bearing ewe lambs (n = 45) were randomly selected and 30 were milked once at weeks three (W3), five (W5), and seven (W7) of lactation. Mammary ultrasound scans were performed at day 110 of pregnancy, W3, W5, W7, and weaning (L69). Single lambs (n = 30) were weighed at birth and at each mammary scanning event. Udder measurements explained 26.8%, 21.4%, and 38.4% of the variation in milk yield at W3, W5 and W7, respectively, and 63.5% and 36.4% of the variation in single lamb growth to W3 and to L69. This ultrasound technique was more accurate in predicting single lamb growth to W3 than milk yield and may enable the identification of pregnant ewe lambs whose progeny would have greater growth rates. More research is needed to identify accurate indicators of superior milk yield and determine whether ultrasound could be used to select ewe lambs.
- ItemEffect of Palpable Udder Defects on Milk Yield, Somatic Cell Count, and Milk Composition in Non-Dairy Ewes.(28/09/2021) Zeleke MM; Kenyon PR; Flay KJ; Aberdein D; Pain SJ; Peterson SW; Ridler ALIn non-dairy ewes, udder defects hinder the survival and weight gain of their pre-weaned lambs. The objectives of this study were to determine the effects of palpable udder defects on milk yield, somatic cell count (SCC), and milk composition in non-dairy Romney ewes. Ewes with a history of udder defects or normal udders were selected for the study. Of a total of 48 ewes that lambed, 30 ewes reared at least one lamb, and were milked six times, once weekly, for the first six weeks of lactation. Udder halves were palpated and scored at each milking event. Multivariate linear mixed models examined the impacts of udder defects on udder-half and whole-udder milk yield, SCC, and milk composition (fat, protein, lactose, total solids, and solids non-fat (SNF)). Across the six examinations, 24.7% of the total 352 udder-half examinations were observed to be defective. Udder halves that were defective at least once produced on average 57.9% less (p < 0.05) milk than normal udder halves, while normal udder halves with a contralateral defective half yielded 33.5% more (p < 0.05) milk than normal udder halves. Successive occurrence of both hard and lump udder defect categories in an udder-half, udder defect detection early in lactation, and a high frequency of udder defect detection were all associated with udder-half milk yield loss (p < 0.05). At the whole-udder level, no differences in milk yield (p > 0.05) were observed between those with one udder-half defective and both normal udder-halves. However, udders in which one udder half was categorised as hard but progressed to lump and remained as lump until 42 days of lactation produced less (p < 0.05) milk compared with normal udders. With the exception of SNF, there were no significant associations (p > 0.05) between milk composition parameters and udder defect. Overall, these findings emphasise the importance of udder health in non-dairy ewes and the potential effect of udder defects on their lambs.
- ItemFunctional development of the adult ovine mammary gland--insights from gene expression profiling.(5/10/2015) Paten AM; Duncan EJ; Pain SJ; Peterson SW; Kenyon PR; Blair HT; Dearden PKBACKGROUND: The mammary gland is a dynamic organ that undergoes dramatic physiological adaptations during the transition from late pregnancy to lactation. Investigation of the molecular basis of mammary development and function will provide fundamental insights into tissue remodelling as well as a better understanding of milk production and mammary disease. This is important to livestock production systems and human health. Here we use RNA-seq to identify differences in gene expression in the ovine mammary gland between late pregnancy and lactation. RESULTS: Between late pregnancy (135 days of gestation ± 2.4 SD) and lactation (15 days post partum ± 1.27 SD) 13 % of genes in the sheep genome were differentially expressed in the ovine mammary gland. In late pregnancy, cell proliferation, beta-oxidation of fatty acids and translation were identified as key biological processes. During lactation, high levels of milk fat synthesis were mirrored by enrichment of genes associated with fatty acid biosynthesis, transport and lipogenesis. Protein processing in the endoplasmic reticulum was enriched during lactation, likely in support of active milk protein synthesis. Hormone and growth factor signalling and activation of signal transduction pathways, including the JAK-STAT and PPAR pathways, were also differently regulated, indicating key roles for these pathways in functional development of the ovine mammary gland. Changes in the expression of epigenetic regulators, particularly chromatin remodellers, indicate a possible role in coordinating the large-scale transcriptional changes that appear to be required to switch mammary processes from growth and development during late pregnancy to synthesis and secretion of milk during lactation. CONCLUSIONS: Coordinated transcriptional regulation of large numbers of genes is required to switch between mammary tissue establishment during late pregnancy, and activation and maintenance of milk production during lactation. Our findings indicate the remarkable plasticity of the mammary gland, and the coordinated regulation of multiple genes and pathways to begin milk production. Genes and pathways identified by the present study may be important for managing milk production and mammary development, and may inform studies of diseases affecting the mammary gland.