Browsing by Author "Parody-Merino ÁM"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemAuthor Correction: Dense sampling of bird diversity increases power of comparative genomics.(2021-04) Feng S; Stiller J; Deng Y; Armstrong J; Fang Q; Reeve AH; Xie D; Chen G; Guo C; Faircloth BC; Petersen B; Wang Z; Zhou Q; Diekhans M; Chen W; Andreu-Sánchez S; Margaryan A; Howard JT; Parent C; Pacheco G; Sinding M-HS; Puetz L; Cavill E; Ribeiro ÂM; Eckhart L; Fjeldså J; Hosner PA; Brumfield RT; Christidis L; Bertelsen MF; Sicheritz-Ponten T; Tietze DT; Robertson BC; Song G; Borgia G; Claramunt S; Lovette IJ; Cowen SJ; Njoroge P; Dumbacher JP; Ryder OA; Fuchs J; Bunce M; Burt DW; Cracraft J; Meng G; Hackett SJ; Ryan PG; Jønsson KA; Jamieson IG; da Fonseca RR; Braun EL; Houde P; Mirarab S; Suh A; Hansson B; Ponnikas S; Sigeman H; Stervander M; Frandsen PB; van der Zwan H; van der Sluis R; Visser C; Balakrishnan CN; Clark AG; Fitzpatrick JW; Bowman R; Chen N; Cloutier A; Sackton TB; Edwards SV; Foote DJ; Shakya SB; Sheldon FH; Vignal A; Soares AER; Shapiro B; González-Solís J; Ferrer-Obiol J; Rozas J; Riutort M; Tigano A; Friesen V; Dalén L; Urrutia AO; Székely T; Liu Y; Campana MG; Corvelo A; Fleischer RC; Rutherford KM; Gemmell NJ; Dussex N; Mouritsen H; Thiele N; Delmore K; Liedvogel M; Franke A; Hoeppner MP; Krone O; Fudickar AM; Milá B; Ketterson ED; Fidler AE; Friis G; Parody-Merino ÁM; Battley PF; Cox MP; Lima NCB; Prosdocimi F; Parchman TL; Schlinger BA; Loiselle BA; Blake JG; Lim HC; Day LB; Fuxjager MJ; Baldwin MW; Braun MJ; Wirthlin M; Dikow RB; Ryder TB; Camenisch G; Keller LF; DaCosta JM; Hauber ME; Louder MIM; Witt CC; McGuire JA; Mudge J; Megna LC; Carling MD; Wang B; Taylor SA; Del-Rio G; Aleixo A; Vasconcelos ATR; Mello CV; Weir JT; Haussler D; Li Q; Yang H; Wang J; Lei F; Rahbek C; Gilbert MTP; Graves GR; Jarvis ED; Paten B; Zhang GIn Supplementary Table 1 of this Article, 23 samples (B10K-DU-029-32, B10K-DU-029-33, B10K-DU-029-36 to B10K-DU-029-44, B10K-DU- 029-46, B10K-DU-029-47, B10K-DU-029-49 to B10K-DU-029-53, B10K-DU- 029-75 to B10K-DU-029-77, B10K-DU-029-80, and B10K-DU-030-03; styled in boldface in the revised table) were assigned to the incorrect institution. Supplementary Table 1 has been amended to reflect the correct source institution for these samples, and associated data (tissue, museum ID/source specimen ID, site, state/province, latitude, longitude, date collected and sex) have been updated accordingly. The original table is provided as Supplementary Information to this Amendment, and the original Article has been corrected online.
- ItemInteracting Roles of Breeding Geography and Early-Life Settlement in Godwit Migration Timing(Frontiers Media SA, 17/03/2020) Battley PF; Conklin JR; Parody-Merino ÁM; Langlands PA; Southey I; Burns T; Melville DS; Schuckard R; Riegen AC; Potter MAWhile avian migration timing is clearly influenced by both breeding and non-breeding geography, it is challenging to identify the relative and interdependent roles of endogenous programs, early-life experience, and carry-over effects in the development of adult annual schedules. Bar-tailed godwits Limosa lapponica baueri migrate northward from New Zealand toward Asian stopover sites during the boreal spring, with differences in timing between individuals known to relate to their eventual breeding-ground geography in Alaska. Here, we studied the timing of northward migration of individual godwits at three sites spanning 1,100 km of New Zealand’s 1,400-km length. A lack of morphological or genetic structure among sites indicates that the Alaskan breeding population mixes freely across all sites, and larger birds (southern breeders) tended to migrate earlier than smaller birds (northern breeders) at all sites. However, we unexpectedly found that migration timing varied between the sites, with birds from southern New Zealand departing on average 9.4–11 days earlier than birds from more northerly sites, a difference consistent across 4 years of monitoring. There is no obvious adaptive reason for migration timing differences of this magnitude, and it is likely that geographic variation in timing within New Zealand represents a direct response to latitudinal variation in photoperiod. Using resightings of marked birds, we show that immature godwits explore widely around New Zealand before embarking on their first northward migration at age 2–4 years. Thus, the process by which individual migration dates are established appears to involve: (1) settlement by sub-adult godwits at non-breeding sites, to which they are highly faithful as adults; (2) a consequent response to environmental cues (i.e., photoperiod) that sets the local population’s migration window; and (3) endogenous mechanisms, driven by breeding geography, that establish and maintain the well-documented consistent differences between individuals. This implies that behavioral decisions by young godwits have long-lasting impacts on adult annual-cycle schedules, but the factors guiding non-breeding settlement are currently unknown.