Browsing by Author "Naffa R"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemBone quality changes as measured by Raman and FTIR spectroscopy in primiparous cows with humeral fracture from New Zealand.(2023) Wehrle-Martinez A; Waterland MR; Naffa R; Lawrence K; Back PJ; Rogers CW; Dittmer KThe occurrence of spontaneous humeral fractures in primiparous dairy cows from New Zealand prompted the study of bone material from affected cows to further characterize this condition and to outline a likely pathogenesis. Previous studies indicate that these cows developed osteoporosis due to periods of suboptimal bone formation followed by increased bone resorption during the period of lactation complicated by copper deficiency. We hypothesized that there are significant differences in the chemical composition/bone quality in bones from cows with spontaneous humeral fracture compared to cows without humeral fractures. In this study, Raman and Fourier transform infrared spectroscopy band ratios were, for the first time, measured, calculated, and compared in bone samples from 67 primiparous dairy cows that suffered a spontaneous fracture of the humerus and 14 age-matched post-calving cows without humeral fractures. Affected bone showed a significantly reduced mineral/matrix ratio, increased bone remodeling, newer bone tissue with lower mineralization and, lower carbonate substitution, and reduced crystallinity. As such, is likely that these have detrimentally impacted bone quality and strength in affected cows.
- ItemNovel Assessment of Collagen and Its Crosslink Content in the Humerus from Primiparous Dairy Cows with Spontaneous Humeral Fractures Due to Osteoporosis from New Zealand.(23/09/2022) Wehrle-Martinez A; Naffa R; Back P; Rogers CW; Lawrence K; Loo T; Sutherland-Smith A; Dittmer KNumerous cases of spontaneous humeral fracture in primiparous dairy cows from New Zealand have prompted the study of the condition to establish probable causes or risk factors associated with the condition. Previous studies identified inadequate protein-calorie malnutrition as an important contributory factor. Earlier case studies also reported that ~50% of cows have low liver and/or serum copper concentration at the time of humeral fracture. Because copper is so closely associated with the formation of collagen cross-links, the aim of this study was to compare collagen and collagen crosslink content in the humerus from primiparous cows with and without humeral fractures and to determine the role of copper in the occurrence of these fractures. Humeri were collected from cows with and without humeral fractures, ground, and the collagen and collagen cross-link content measured using high-performance liquid chromatography. Collagen content was significantly higher in the humeri of cows without humeral fractures, while total collagen crosslink content was significantly higher in the humerus of cows with humeral fractures. These results indicate other factor/s (e.g., protein-calorie undernutrition) might be more important than the copper status in the occurrence of humeral fractures in dairy cows in New Zealand.
- ItemRAMAN AND ATR-FTIR SPECTROSCOPY TOWARDS CLASSIFICATION OF WET BLUE BOVINE LEATHER USING RATIOMETRIC AND CHEMOMETRIC ANALYSIS(BioMed Central Ltd, 2020-12) Mehta M; Naffa R; Maidment C; Holmes G; Waterland MThere is a substantial loss of value in bovine leather every year due to a leather quality defect known as “looseness”. Data show that 7% of domestic hide production is affected to some degree, with a loss of $35 m in export returns. This investigation is devoted to gaining a better understanding of tight and loose wet blue leather based on vibrational spectroscopy observations of its structural variations caused by physical and chemical changes that also affect the tensile and tear strength. Several regions from the wet blue leather were selected for analysis. Samples of wet blue bovine leather were collected and studied in the sliced form using Raman spectroscopy (using 532 nm excitation laser) and Attenuated Total Reflectance - Fourier Transform InfraRed (ATR-FTIR) spectroscopy. The purpose of this study was to use ATR-FTIR and Raman spectra to classify distal axilla (DA) and official sampling position (OSP) leather samples and then employ univariate or multivariate analysis or both. For univariate analysis, the 1448 cm− 1 (CH2 deformation) band and the 1669 cm− 1 (Amide I) band were used for evaluating the lipid-to-protein ratio from OSP and DA Raman and IR spectra as indicators of leather quality. Curve-fitting by the sums-of-Gaussians method was used to calculate the peak area ratios of 1448 and 1669 cm− 1 band. The ratio values obtained for DA and OSP are 0.57 ± 0.099, 0.73 ± 0.063 for Raman and 0.40 ± 0.06 and 0.50 ± 0.09 for ATR-FTIR. The results provide significant insight into how these regions can be classified. Further, to identify the spectral changes in the secondary structures of collagen, the Amide I region (1600–1700 cm− 1) was investigated and curve-fitted-area ratios were calculated. The 1648:1681 cm− 1 (non-reducing: reducing collagen types) band area ratios were used for Raman and 1632:1650 cm− 1 (triple helix: α-like helix collagen) for IR. The ratios show a significant difference between the two classes. To support this qualitative analysis, logistic regression was performed on the univariate data to classify the samples quantitatively into one of the two groups. Accuracy for Raman data was 90% and for ATR-FTIR data 100%. Both Raman and ATR-FTIR complemented each other very well in differentiating the two groups. As a comparison, and to reconfirm the classification, multivariate analysis was performed using Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). The results obtained indicate good classification between the two leather groups based on protein and lipid content. Principal component score 2 (PC2) distinguishes OSP and DA by symmetrically grouping samples at positive and negative extremes. The study demonstrates an excellent model for wider research on vibrational spectroscopy for early and rapid diagnosis of leather quality.
- ItemValidity and reliability of Raman spectroscopy for carotenoid assessment in cattle skin(Elsevier BV, 2021-09) Mehta M; Naffa R; Zhang W; Schreurs NM; Waterland M; Cooper S; Holmes GCarotenoids are powerful antioxidants capable of helping to protect the skin from the damaging effects of exposure to sun by reducing the free radicals in skin produced by exposure to ultraviolet radiation, and they may also have a physical protective effect in human skin. Since carotenoids are lipophilic molecules which can be ingested with the diet, they can accumulate in significant quantities in the skin. Several studies on humans have been conducted to evaluate the protective function of carotenoids against various diseases, but there is very limited published information available to understand the mechanism of carotenoid bioavailability in animals. The current study was conducted to investigate the skin carotenoid level (SCL) in two cattle skin sets - weaners with an unknown feeding regime and New Generation Beef (NGB) cattle with monitored feed at three different ages. Rapid analytical and sensitive Raman spectroscopy has been shown to be of interest as a powerful technique for the detection of carotenoids in cattle skin due to the strong resonance enhancement with 532 nm laser excitation. The spectral difference of both types of skin were measured and quantified using univariate and linear discriminant analysis. SCL was higher in NGB cattle than weaners and there is a perfect classification accuracy between weaners and NGB cattle skin using carotenoid markers as a basis. Further work carried out on carotenoid rich NGB cattle skin of 8, 12 and 24 months of age identified an increasing trend in SCL with age. The present work validated the ability of Raman spectroscopy to determine the skin carotenoid level in cattle by comparing it with established HPLC methods. There is an excellent correlation of R2 = 0.96 between the two methods that could serve as a model for future application for larger population studies.