Browsing by Author "Mohsin H"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- ItemEffects of In-Process Temperatures and Blending Polymers on Acrylonitrile Butadiene Styrene Blends(MDPI (Basel, Switzerland), 2021-12-01) Harris M; Potgieter J; Mohsin H; De Silva K; Guen M-JLAcrylonitrile butadiene styrene (ABS) is a renowned commodity polymer for additive manufacturing, particularly fused deposition modelling (FDM). The recent large-scale applications of 3D-printed ABS require stable mechanical properties than ever needed. However, thermochemical scission of butadiene bonds is one of the contemporary challenges affecting the overall ABS stability. In this regard, literature reports melt-blending of ABS with different polymers with high thermal resistance. However, the comparison for the effects of different polymers on tensile strength of 3D-printed ABS blends was not yet reported. Furthermore, the cumulative studies comprising both blended polymers and in-process thermal variables for FDM were not yet presented as well. This research, for the first time, presents the statistical comparison of tensile properties for the added polymers and in-process thermal variables (printing temperature and build surface temperature). The research presents Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) to explain the thermochemical reasons behind achieved mechanical properties. Overall, ABS blend with PP shows high tensile strength (≈31 MPa) at different combinations of in-process parameters. Furthermore, some commonalities among both blends are noted, i.e., the tensile strength improves with increase of surface (bed) and printing temperature.
- ItemHybrid deposition additive manufacturing: novel volume distribution, thermo-mechanical characterization, and image analysis(The Brazilian Society of Mechanical Sciences and Engineering, 25/08/2022) Harris M; Mohsin H; Potgieter J-G; Arif K; Anwar S; AlFaify A; Farooq MUThe structural integrity of additive manufacturing structures is a pronounced challenge considering the voids and weak layer-to-layer adhesion. One of the potential ways is hybrid deposition manufacturing (HDM) that includes fused filament fabrication (FFF) with the conventional filling process, also known as “HDM composites". HDM is a potential technique for improving structural stability by replacing the thermoplastic void structure with a voidless epoxy. However, the literature lacks investigation of FFF/epoxy HDM-based composites regarding optimal volume distribution, effects of brittle and ductile FFF materials, and fractographic analysis. This research presents the effects of range of volume distributions (10–90%) between FFF and epoxy system for tensile, flexure, and compressive characterization. Volume distribution in tensile and flexure samples is achieved using printable wall thickness, slot width, and maximum width. For compression, the printable wall thickness, slot diameter, and external diameter are considered. Polylactic acid and acrylonitrile butadiene styrene are used to analyze the brittle and ductile FFF structures. The research reports novel application of image analysis during mechanical characterization using high-quality camera and fractographic analysis using scanning electron microscopy (SEM). The results present surprising high tensile strain (0.038 mm/mm) and compressive strength (64.5 MPa) for lower FDM-percentages (10%, 20%) that are explained using in situ image analysis, SEM, stress–strain simulations, and dynamic mechanical analysis (DMA). In this regard, the proposed work holds novelty to apply DMA for HDM. The optimal volume distributions of 70% and 80% alongside fractographic mechanisms for lower percentages (10%, 20%) can potentially contribute to structural applications and future material-based innovations for HDM.
- ItemPartial Biodegradable Blend for Fused Filament Fabrication: In-Process Thermal and Post-Printing Moisture Resistance(MDPI AG, 9/04/2022) Harris M; Mohsin H; Naveed R; Potgieter J-G; Ishfaq K; Ray S; Guen M-JL; Archer R; Arif KDespite the extensive research, the moisture-based degradation of the 3D-printed polypropylene and polylactic acid blend is not yet reported. This research is a part of study reported on partial biodegradable blends proposed for large-scale additive manufacturing applications. However, the previous work does not provide information about the stability of the proposed blend system against moisture-based degradation. Therefore, this research presents a combination of excessive physical interlocking and minimum chemical grafting in a partial biodegradable blend to achieve stability against in-process thermal and moisture-based degradation. In this regard, a blend of polylactic acid and polypropylene compatibilized with polyethylene graft maleic anhydride is presented for fused filament fabrication. The research implements, for the first time, an ANOVA for combined thermal and moisture-based degradation. The results are explained using thermochemical and microscopic techniques. Scanning electron microscopy is used for analyzing the printed blend. Fourier transform infrared spectroscopy has allowed studying the intermolecular interactions due to the partial blending and degradation mechanism. Differential scanning calorimetry analyzes the blending (physical interlocking or chemical grafting) and thermochemical effects of the degradation mechanism. The thermogravimetric analysis further validates the physical interlocking and chemical grafting. The novel concept of partial blending with excessive interlocking reports high mechanical stability against moisture-based degradation.
- ItemPartial Biodegradable Blend with High Stability against Biodegradation for Fused Deposition Modeling(MDPI AG, 11/04/2022) Harris M; Mohsin H; Potgieter J; Ishfaq K; Archer R; Chen Q; De silva K; Guen M-JL; Wilson R; Arif KThis research presents a partial biodegradable polymeric blend aimed for large-scale fused deposition modeling (FDM). The literature reports partial biodegradable blends with high contents of fossil fuel-based polymers (>20%) that make them unfriendly to the ecosystem. Furthermore, the reported polymer systems neither present good mechanical strength nor have been investigated in vulnerable environments that results in biodegradation. This research, as a continuity of previous work, presents the stability against biodegradability of a partial biodegradable blend prepared with polylactic acid (PLA) and polypropylene (PP). The blend is designed with intended excess physical interlocking and sufficient chemical grafting, which has only been investigated for thermal and hydrolytic degradation before by the same authors. The research presents, for the first time, ANOVA analysis for the statistical evaluation of endurance against biodegradability. The statistical results are complemented with thermochemical and visual analysis. Fourier transform infrared spectroscopy (FTIR) determines the signs of intermolecular interactions that are further confirmed by differential scanning calorimetry (DSC). The thermochemical interactions observed in FTIR and DSC are validated with thermogravimetric analysis (TGA). Scanning electron microscopy (SEM) is also used as a visual technique to affirm the physical interlocking. It is concluded that the blend exhibits high stability against soil biodegradation in terms of high mechanical strength and high mass retention percentage.
- ItemPartial Polymer Blend for Fused Filament Fabrication with High Thermal Stability(MDPI AG, 30/09/2021) Harris M; Potgieter J; Mohsin H; Ray S; Chen JQ; Arif KThe materials for large scale fused filament fabrication (FFF) are not yet designed to resist thermal degradation. This research presents a novel polymer blend of polylactic acid with polypropylene for FFF, purposefully designed with minimum feasible chemical grafting and overwhelming physical interlocking to sustain thermal degradation. Multi-level general full factorial ANOVA is performed for the analysis of thermal effects. The statistical results are further investigated and validated using different thermo-chemical and visual techniques. For example, Fourier transform infrared spectroscopy (FTIR) analyzes the effects of blending and degradation on intermolecular interactions. Differential scanning calorimetry (DSC) investigates the nature of blending (grafting or interlocking) and effects of degradation on thermal properties. Thermogravimetric analysis (TGA) validates the extent of chemical grafting and physical interlocking detected in FTIR and DSC. Scanning electron microscopy (SEM) is used to analyze the morphology and phase separation. The novel approach of overwhelmed physical interlocking and minimum chemical grafting for manufacturing 3D printing blends results in high structural stability (mechanical and intermolecular) against thermal degradation as compared to neat PLA.