Browsing by Author "Luo N"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemDigestion behaviour of capsaicinoid-loaded emulsion gels and bioaccessibility of capsaicinoids: Effect of emulsifier type(Elsevier B V, 2023-03-06) Luo N; Ye A; Wolber FM; Singh H; Sun QIn this study, the effect of emulsifier type, i.e. whey protein versus Tween 80, on the digestion behaviour of emulsion gels containing capsaicinoids (CAPs) was examined. The results indicate that the CAP-loaded Tween 80 emulsion gel was emptied out significantly faster during gastric digestion than the CAP-loaded whey protein emulsion gel. The Tween-80-coated oil droplets appeared to be in a flocculated state in the emulsion gel, had no interactions with the protein matrix and were easily released from the protein matrix during gastric digestion. The whey-protein-coated oil droplets showed strong interactions with the protein matrix, and the presence of thick protein layer around the oil droplets protected their liberation during gastric digestion. During intestinal digestion, the CAP-loaded Tween 80 emulsion gel had a lower extent of lipolysis than the CAP-loaded whey protein emulsion gel, probably because the interfacial layer formed by Tween 80 was resistance to displacement by bile salts, and/or because Tween 80 formed interfacial complexes with bile salts/lipolytic enzymes. Because of the softer structure of the CAP-loaded Tween 80 emulsion gel, the gel particles were broken down much faster and the oil droplets were liberated from the protein matrix more readily than for the CAP-loaded whey protein emulsion gel during intestinal digestion; this promoted the release of CAP molecules from the gel. In addition, the Tween 80 molecules displaced from the interface would participate in the formation of mixed micelles and would help to solubilize the released CAP molecules, leading to improved bioaccessibility of CAP. Information obtained from this study could be useful in designing functional foods for the delivery of lipophilic bioactive compounds.
- ItemEffect of Gel Structure on the In Vitro Gastrointestinal Digestion Behaviour of Whey Protein Emulsion Gels and the Bioaccessibility of Capsaicinoids(MDPI (Basel, Switzerland), 2021-03-04) Luo N; Ye A; Wolber FM; Singh H; Kontominas MGThis study investigated the effect of gel structure on the digestion of heat-set whey protein emulsion gels containing capsaicinoids (CAP), including the bioaccessibility of CAP. Upon heat treatment at 90 °C, whey protein emulsion gels containing CAP (10 wt% whey protein isolate, 20 wt% soybean oil, 0.02 wt% CAP) with different structures and gel mechanical strengths were formed by varying ionic strength. The hard gel (i.e., oil droplet size d4,3 ~ 0.5 μm, 200 mM NaCl), with compact particulate gel structure, led to slower disintegration of the gel particles and slower hydrolysis of the whey proteins during gastric digestion compared with the soft gel (i.e., d4,3 ~ 0.5 μm, 10 mM NaCl). The oil droplets started to coalesce after 60 min of gastric digestion in the soft gel, whereas minor oil droplet coalescence was observed for the hard gel at the end of the gastric digestion. In general, during intestinal digestion, the gastric digesta from the hard gel was disintegrated more slowly than that from the soft gel. A power-law fit between the bioaccessibility of CAP (Y) and the extent of lipid digestion (X) was established: Y = 49.2 × (X - 305.3)0.104, with R2 = 0.84. A greater extent of lipid digestion would lead to greater release of CAP from the food matrix; also, more lipolytic products would be produced and would participate in micelle formation, which would help to solubilize the released CAP and therefore result in their higher bioaccessibility.