Browsing by Author "Luo J"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemMeta-analysis of New Zealand's nitrous oxide emission factors for ruminant excreta supports disaggregation based on excreta form, livestock type and slope class.(Elsevier B.V., 2020-08-25) van der Weerden TJ; Noble AN; Luo J; de Klein CAM; Saggar S; Giltrap D; Gibbs J; Rys G; Jenerette DGlobally, animal excreta (dung and urine) deposition onto grazed pastures represents more than half of anthropogenic nitrous oxide (N2O) emissions. To account for these emissions, New Zealand currently employs urine and dung emission factor (EF3) values of 1.0% and 0.25%, respectively, for all livestock. These values are primarily based on field studies conducted on fertile, flatland pastures predominantly used for dairy cattle production but do not consider emissions from hill land pastures primarily used for sheep, deer and non-dairy cattle. The objective of this study was to determine the most suitable urine and dung EF3 values for dairy cattle, non-dairy cattle, and sheep grazing pastures on different slopes based on a meta-analysis of New Zealand EF3 studies. As none of the studies included deer excreta, deer EF3 values were estimated from cattle and sheep values. The analysis revealed that a single dung EF3 value should be maintained, although the value should be reduced from 0.25% to 0.12%. Furthermore, urine EF3 should be disaggregated by livestock type (cattle > sheep) and topography (flatland and low sloping hill country > medium and steep sloping hill country), with EF3 values ranging from 0.08% (sheep urine on medium and steep slopes) to 0.98% (dairy cattle on flatland and low slopes). While the mechanism(s) causing differences in urine EF3 values for sheep and cattle are unknown, the 'slope effect' on urine EF3 is partly due to differences in soil chemical and physical characteristics, which influence soil microbial processes on the different slope classes. The revised EF3 values were used in an updated New Zealand inventory approach, resulting in 30% lower national N2O emissions for 2017 compared to using the current EF3 values. We recommend using the revised EF3 values in New Zealand's national greenhouse gas inventory to more accurately capture N2O emissions from livestock grazing.
- ItemPresent and future distribution of bat hosts of sarbecoviruses: implications for conservation and public health(The Royal Society, 2022-05-25) Muylaert RL; Kingston T; Luo J; Vancine MH; Galli N; Carlson CJ; John RS; Rulli MC; Hayman DTSGlobal changes in response to human encroachment into natural habitats and carbon emissions are driving the biodiversity extinction crisis and increasing disease emergence risk. Host distributions are one critical component to identify areas at risk of viral spillover, and bats act as reservoirs of diverse viruses. We developed a reproducible ecological niche modelling pipeline for bat hosts of SARS-like viruses (subgenus Sarbecovirus), given that several closely related viruses have been discovered and sarbecovirus-host interactions have gained attention since SARS-CoV-2 emergence. We assessed sampling biases and modelled current distributions of bats based on climate and landscape relationships and project future scenarios for host hotspots. The most important predictors of species distributions were temperature seasonality and cave availability. We identified concentrated host hotspots in Myanmar and projected range contractions for most species by 2100. Our projections indicate hotspots will shift east in Southeast Asia in locations greater than 2°C hotter in a fossil-fuelled development future. Hotspot shifts have implications for conservation and public health, as loss of population connectivity can lead to local extinctions, and remaining hotspots may concentrate near human populations.