Browsing by Author "Lu L"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemGluten Induces Subtle Histological Changes in Duodenal Mucosa of Patients with Non-Coeliac Gluten Sensitivity: A Multicentre Study(MDPI (Basel, Switzerland), 2022-06-15) Rostami K; Ensari A; Marsh MN; Srivastava A; Villanacci V; Carroccio A; Asadzadeh Aghdaei H; Bai JC; Bassotti G; Becheanu G; Bell P; Di Bella C; Bozzola AM; Cadei M; Casella G; Catassi C; Ciacci C; Apostol Ciobanu DG; Cross SS; Danciu M; Das P; Del Sordo R; Drage M; Elli L; Fasano A; Florena AM; Fusco N; Going JJ; Guandalini S; Hagen CE; Hayman DTS; Ishaq S; Jericho H; Johncilla M; Johnson M; Kaukinen K; Levene A; Liptrot S; Lu L; Makharia GK; Mathews S; Mazzarella G; Maxim R; La Win Myint K; Mohaghegh-Shalmani H; Moradi A; Mulder CJJ; Ray R; Ricci C; Rostami-Nejad M; Sapone A; Sanders DS; Taavela J; Volta U; Walker M; Derakhshan M; Witteman BBackground: Histological changes induced by gluten in the duodenal mucosa of patients with non-coeliac gluten sensitivity (NCGS) are poorly defined. Objectives: To evaluate the structural and inflammatory features of NCGS compared to controls and coeliac disease (CeD) with milder enteropathy (Marsh I-II). Methods: Well-oriented biopsies of 262 control cases with normal gastroscopy and histologic findings, 261 CeD, and 175 NCGS biopsies from 9 contributing countries were examined. Villus height (VH, in μm), crypt depth (CrD, in μm), villus-to-crypt ratios (VCR), IELs (intraepithelial lymphocytes/100 enterocytes), and other relevant histological, serologic, and demographic parameters were quantified. Results: The median VH in NCGS was significantly shorter (600, IQR: 400−705) than controls (900, IQR: 667−1112) (p < 0.001). NCGS patients with Marsh I-II had similar VH and VCR to CeD [465 µm (IQR: 390−620) vs. 427 µm (IQR: 348−569, p = 0·176)]. The VCR in NCGS with Marsh 0 was lower than controls (p < 0.001). The median IEL in NCGS with Marsh 0 was higher than controls (23.0 vs. 13.7, p < 0.001). To distinguish Marsh 0 NCGS from controls, an IEL cut-off of 14 showed 79% sensitivity and 55% specificity. IEL densities in Marsh I-II NCGS and CeD groups were similar. Conclusion: NCGS duodenal mucosa exhibits distinctive changes consistent with an intestinal response to luminal antigens, even at the Marsh 0 stage of villus architecture.
- ItemThe impact of ethnicity and intra-pancreatic fat on the postprandial metabolome response to whey protein in overweight Asian Chinese and European Caucasian women with prediabetes(Frontiers Media S.A., 2022-10-14) Joblin-Mills A; Wu Z; Fraser K; Jones B; Yip W; Lim JJ; Lu L; Sequeira I; Poppitt S; Li XThe “Thin on the Outside Fat on the Inside” TOFI_Asia study found Asian Chinese to be more susceptible to Type 2 Diabetes (T2D) compared to European Caucasians matched for gender and body mass index (BMI). This was influenced by degree of visceral adipose deposition and ectopic fat accumulation in key organs, including liver and pancreas, leading to altered fasting plasma glucose, insulin resistance, and differences in plasma lipid and metabolite profiles. It remains unclear how intra-pancreatic fat deposition (IPFD) impacts TOFI phenotype-related T2D risk factors associated with Asian Chinese. Cow’s milk whey protein isolate (WPI) is an insulin secretagogue which can suppress hyperglycemia in prediabetes. In this dietary intervention, we used untargeted metabolomics to characterize the postprandial WPI response in 24 overweight women with prediabetes. Participants were classified by ethnicity (Asian Chinese, n=12; European Caucasian, n=12) and IPFD (low IPFD < 4.66%, n=10; high IPFD ≥ 4.66%, n=10). Using a cross-over design participants were randomized to consume three WPI beverages on separate occasions; 0 g (water control), 12.5 g (low protein, LP) and 50 g (high protein, HP), consumed when fasted. An exclusion pipeline for isolating metabolites with temporal (T0-240mins) WPI responses was implemented, and a support vector machine-recursive feature elimination (SVM-RFE) algorithm was used to model relevant metabolites by ethnicity and IPFD classes. Metabolic network analysis identified glycine as a central hub in both ethnicity and IPFD WPI response networks. A depletion of glycine relative to WPI concentration was detected in Chinese and high IPFD participants independent of BMI. Urea cycle metabolites were highly represented among the ethnicity WPI metabolome model, implicating a dysregulation in ammonia and nitrogen metabolism among Chinese participants. Uric acid and purine synthesis pathways were enriched within the high IPFD cohort’s WPI metabolome response, implicating adipogenesis and insulin resistance pathways. In conclusion, the discrimination of ethnicity from WPI metabolome profiles was a stronger prediction model than IPFD in overweight women with prediabetes. Each models’ discriminatory metabolites enriched different metabolic pathways that help to further characterize prediabetes in Asian Chinese women and women with increased IPFD, independently.