Browsing by Author "Li C"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- ItemComparison of Cd(II) adsorption properties onto cellulose, hemicellulose and lignin extracted from rice bran(Elsevier Ltd, 2021-06) Wu C; Ren M; Zhang X; Li C; Li T; Yang Z; Chen Z; Wang LRice bran, an underutilized by-product obtained from outer rice layers, has received wide interest due to its abundance, eco-friendliness, and low cost. In this research, cellulose, hemicellulose and lignin as the main components of rice bran were fractionated, and their Cd(II) adsorption capacity, behavior and mechanism were further studied. The adsorption capacity of cellulose for Cd(II) was 5.79 mg/g within the equilibrium time of 10 min, which was 1.8 and 3.6 times those of hemicellulose and lignin, respectively. The Cd(II) adsorption onto cellulose exhibited monolayer surface behavior, whilst the heterogeneous adsorption behavior was observed for hemicellulose and lignin. These differences were related to the discrepancy of morphology and chemical composition in three polymers. The multi-hole sticks morphology of cellulose and porous blocky structure of hemicellulose were observed, while lignin showed compact and agglomerated blocky structure. Cellulose had numerous available adsorption sites including the oxygen-containing functional groups, which bonded with Cd(II) driven by chemical interaction. In conclusion, it highlights that cellulose from rice bran has the great potential of being applied as adsorbent for the Cd(II) removal.
- ItemDietary Supplementation of Yeast Culture Into Pelleted Total Mixed Rations Improves the Growth Performance of Fattening Lambs(Frontiers Media S.A., 2021-05) Song B; Wu T; You P; Wang H; Burke JL; Kang K; Yu W; Wang M; Li B; He Y; Huo Q; Li C; Tian W; Li R; Li J; Wang C; Sun XThere is a growing interest in the use of yeast (Saccharomyces cerevisiae) culture (YC) for the enhancement of growth performance and general animal health. Grain-based pelleted total mixed rations (TMR) are emerging in intensive sheep farming systems, but it is uncertain if the process of pelleting results in YC becoming ineffective. This study aimed to examine the effects of YC supplemented to pelleted TMR at two proportions of corn in the diet on animal performance, feed digestion, blood parameters, rumen fermentation, and microbial community in fattening lambs. A 2 × 2 factorial design was adopted with two experimental factors and two levels in each factor, resulting in four treatments: (1) low proportion of corn in the diet (LC; 350 g corn/kg diet) without YC, (2) LC with YC (5 g/kg diet), (3) high proportion of corn in the diet (HC; 600 g corn/kg diet) without YC, and (4) HC with YC. Fifty-six 3-month-old male F2 hybrids of thin-tailed sheep and Northeast fine-wool sheep with a liveweight of 19.9 ± 2.7 kg were randomly assigned to the four treatment groups with an equal number of animals in each group. The results showed that live yeast cells could not survive during pelleting, and thus, any biological effects of the YC were the result of feeding dead yeast and the metabolites of yeast fermentation rather than live yeast cells. The supplementation of YC resulted in 31.1 g/day more average daily gain regardless of the proportion of corn in the diet with unchanged feed intake during the 56-day growth measurement period. The digestibility of neutral detergent fibre and acid detergent fibre was increased, but the digestibility of dry matter, organic matter, and crude protein was not affected by YC. The supplementation of YC altered the rumen bacterial population and species, but the most abundant phyla Bacteroidetes, Firmicutes, and Proteobacteria remained unchanged. This study indicates that YC products can be supplemented to pelleted TMR for improved lamb growth performance, although live yeast cells are inactive after pelleting. The improved performance could be attributed to improved fibre digestibility.
- ItemFine-mapping analysis including over 254,000 East Asian and European descendants identifies 136 putative colorectal cancer susceptibility genes.(Springer Nature, 2024-04-26) Chen Z; Guo X; Tao R; Huyghe JR; Law PJ; Fernandez-Rozadilla C; Ping J; Jia G; Long J; Li C; Shen Q; Xie Y; Timofeeva MN; Thomas M; Schmit SL; Díez-Obrero V; Devall M; Moratalla-Navarro F; Fernandez-Tajes J; Palles C; Sherwood K; Briggs SEW; Svinti V; Donnelly K; Farrington SM; Blackmur J; Vaughan-Shaw PG; Shu X-O; Lu Y; Broderick P; Studd J; Harrison TA; Conti DV; Schumacher FR; Melas M; Rennert G; Obón-Santacana M; Martín-Sánchez V; Oh JH; Kim J; Jee SH; Jung KJ; Kweon S-S; Shin M-H; Shin A; Ahn Y-O; Kim D-H; Oze I; Wen W; Matsuo K; Matsuda K; Tanikawa C; Ren Z; Gao Y-T; Jia W-H; Hopper JL; Jenkins MA; Win AK; Pai RK; Figueiredo JC; Haile RW; Gallinger S; Woods MO; Newcomb PA; Duggan D; Cheadle JP; Kaplan R; Kerr R; Kerr D; Kirac I; Böhm J; Mecklin J-P; Jousilahti P; Knekt P; Aaltonen LA; Rissanen H; Pukkala E; Eriksson JG; Cajuso T; Hänninen U; Kondelin J; Palin K; Tanskanen T; Renkonen-Sinisalo L; Männistö S; Albanes D; Weinstein SJ; Ruiz-Narvaez E; Palmer JR; Buchanan DD; Platz EA; Visvanathan K; Ulrich CM; Siegel E; Brezina S; Gsur A; Campbell PT; Chang-Claude J; Hoffmeister M; Brenner H; Slattery ML; Potter JD; Tsilidis KK; Schulze MB; Gunter MJ; Murphy N; Castells A; Castellví-Bel S; Moreira L; Arndt V; Shcherbina A; Bishop DT; Giles GG; Southey MC; Idos GE; McDonnell KJ; Abu-Ful Z; Greenson JK; Shulman K; Lejbkowicz F; Offit K; Su Y-R; Steinfelder R; Keku TO; van Guelpen B; Hudson TJ; Hampel H; Pearlman R; Berndt SI; Hayes RB; Martinez ME; Thomas SS; Pharoah PDP; Larsson SC; Yen Y; Lenz H-J; White E; Li L; Doheny KF; Pugh E; Shelford T; Chan AT; Cruz-Correa M; Lindblom A; Hunter DJ; Joshi AD; Schafmayer C; Scacheri PC; Kundaje A; Schoen RE; Hampe J; Stadler ZK; Vodicka P; Vodickova L; Vymetalkova V; Edlund CK; Gauderman WJ; Shibata D; Toland A; Markowitz S; Kim A; Chanock SJ; van Duijnhoven F; Feskens EJM; Sakoda LC; Gago-Dominguez M; Wolk A; Pardini B; FitzGerald LM; Lee SC; Ogino S; Bien SA; Kooperberg C; Li CI; Lin Y; Prentice R; Qu C; Bézieau S; Yamaji T; Sawada N; Iwasaki M; Le Marchand L; Wu AH; Qu C; McNeil CE; Coetzee G; Hayward C; Deary IJ; Harris SE; Theodoratou E; Reid S; Walker M; Ooi LY; Lau KS; Zhao H; Hsu L; Cai Q; Dunlop MG; Gruber SB; Houlston RS; Moreno V; Casey G; Peters U; Tomlinson I; Zheng WGenome-wide association studies (GWAS) have identified more than 200 common genetic variants independently associated with colorectal cancer (CRC) risk, but the causal variants and target genes are mostly unknown. We sought to fine-map all known CRC risk loci using GWAS data from 100,204 cases and 154,587 controls of East Asian and European ancestry. Our stepwise conditional analyses revealed 238 independent association signals of CRC risk, each with a set of credible causal variants (CCVs), of which 28 signals had a single CCV. Our cis-eQTL/mQTL and colocalization analyses using colorectal tissue-specific transcriptome and methylome data separately from 1299 and 321 individuals, along with functional genomic investigation, uncovered 136 putative CRC susceptibility genes, including 56 genes not previously reported. Analyses of single-cell RNA-seq data from colorectal tissues revealed 17 putative CRC susceptibility genes with distinct expression patterns in specific cell types. Analyses of whole exome sequencing data provided additional support for several target genes identified in this study as CRC susceptibility genes. Enrichment analyses of the 136 genes uncover pathways not previously linked to CRC risk. Our study substantially expanded association signals for CRC and provided additional insight into the biological mechanisms underlying CRC development.
- ItemLessons Learned for Pre-Emptive Capture Management as a Tool for Wildlife Conservation during Oil Spills and Eradication Events.(MDPI (Basel, Switzerland), 2023-02-24) Chilvers BL; McClelland PJ; Li CPre-emptive capture or translocation of wildlife during oil spills and prior to pest eradication poison applications are very specific conservation goals within the field of conservation translocation/reintroduction. Protection of wildlife from contamination events occurs during either planned operations such as pest eradication poison applications, or unplanned events such as pollution or oil spills. The aim in both incidences is to protect at-risk wildlife species, ensuring the survival of a threatened regional population or entire species, by excluding wildlife from entering affected areas and therefore preventing impacts on the protected wildlife. If pre-emptive capture does not occur, wildlife may unintentionally be affected and could either die or will need capture, cleaning, and/or medical care and rehabilitation before being released back into a cleared environment. This paper reviews information from pre-emptive captures and translocations of threatened wildlife undertaken during past oil spills and island pest eradications, to assess criteria for species captured, techniques used, outcomes of responses, and lessons learned. From these case studies, the considerations and planning needs for pre-emptive capture are described and recommendations made to allow better use and preparedness for pre-emptive capture as a preventative wildlife conservation tool.
- ItemPrevalence and genetic diversity of Theileria equi from horses in Xinjiang Uygur Autonomous region, China.(Elsevier B.V., 2023-07-01) Zhang Y; Shi Q; Laven R; Li C; He W; Zheng H; Liu S; Lu M; Yang DA; Guo Q; Chahan BTheileria equi is a tick-borne intracellular apicomplexan protozoan parasite that causes equine theileriosis (ET). ET is an economically important disease with a worldwide distribution that significantly impacts international horse movement. Horses are an essential part of the economy in Xinjiang which is home to ∼10% of all the horses in China. However, there is very limited information on the prevalence and genetic complexity of T. equi in this region. Blood samples from 302 horses were collected from May to September 2021 in Ili, Xinjiang, and subjected to PCR examination for the presence of T. equi. In addition, a Bayesian latent class model was employed to estimate the true prevalence of T. equi, and a phylogenetic analysis was carried out based on the 18S rRNA gene of T. equi isolates. Seventy-two horses (23.8%) were PCR positive. After accounting for the imperfect PCR test using a Bayesian latent class model, the estimated true prevalence differed considerably between age groups, being 10.8% (95%CrI: 5.8% - 17.9%) in ≤ 3-year-old horses and 35.7% (95%CrI: 28.1% - 44.5%) in horses that were > 3 year-old. All T. equi isolates had their 18S rRNA gene (430bp) sequenced and analyzed in order to identify whether there were multiple genotypes of T. equi in the Xinjiang horse population. All of the 18S rRNA genes clustered into one phylogenetic group, clade E, which is thus probably the dominant genotype of T. equi in Xinjiang, China. To summarize, we monitored the prevalence of T. equi in horses of Xinjiang, China, with a focus on the association between age and the occurrence of T. equi by Bayesian modelling, accompanied by the genotyping of T. equi isolates. Obtaining the information on genotypes and age structure is significant in monitoring the spread of T. equi and studying the factors responsible for the distribution.