Browsing by Author "Lembo T"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemBat trait, genetic and pathogen data from large-scale investigations of African fruit bats, Eidolon helvum.(1/08/2016) Peel AJ; Baker KS; Hayman DTS; Suu-Ire R; Breed AC; Gembu G-C; Lembo T; Fernández-Loras A; Sargan DR; Fooks AR; Cunningham AA; Wood JLNBats, including African straw-coloured fruit bats (Eidolon helvum), have been highlighted as reservoirs of many recently emerged zoonotic viruses. This common, widespread and ecologically important species was the focus of longitudinal and continent-wide studies of the epidemiological and ecology of Lagos bat virus, henipaviruses and Achimota viruses. Here we present a spatial, morphological, demographic, genetic and serological dataset encompassing 2827 bats from nine countries over an 8-year period. Genetic data comprises cytochrome b mitochondrial sequences (n=608) and microsatellite genotypes from 18 loci (n=544). Tooth-cementum analyses (n=316) allowed derivation of rare age-specific serologic data for a lyssavirus, a henipavirus and two rubulaviruses. This dataset contributes a substantial volume of data on the ecology of E. helvum and its viruses and will be valuable for a wide range of studies, including viral transmission dynamic modelling in age-structured populations, investigation of seasonal reproductive asynchrony in wide-ranging species, ecological niche modelling, inference of island colonisation history, exploration of relationships between island and body size, and various spatial analyses of demographic, morphometric or serological data.
- ItemContinent-wide panmixia of an African fruit bat facilitates transmission of potentially zoonotic viruses(MacMillan Publishers Ltd., 2013) Peel AJ; Sargan DR; Baker KS; Hayman DTS; Barr JA; Crameri G; Suu-Ire R; Broder CC; Lembo T; Wang L-F; Fooks AR; Rossiter SJ; Wood JLN; Cunningam AAThe straw-coloured fruit bat, Eidolon helvum, is Africa’s most widely distributed and commonly hunted fruit bat, often living in close proximity to human populations. This species has been identified as a reservoir of potentially zoonotic viruses, but uncertainties remain regarding viral transmission dynamics and mechanisms of persistence. Here we combine genetic and serological analyses of populations across Africa, to determine the extent of epidemiological connectivity among E. helvum populations. Multiple markers reveal panmixia across the continental range, at a greater geographical scale than previously recorded for any other mammal, whereas populations on remote islands were genetically distinct. Multiple serological assays reveal antibodies to henipaviruses and Lagos bat virus in all locations, including small isolated island populations, indicating that factors other than population size and connectivity may be responsible for viral persistence. Our findings have potentially important public health implications, and highlight a need to avoid disturbances that may precipitate viral spillover.