Browsing by Author "Langford FM"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemHeart Rate and Heart Rate Variability Change with Sleep Stage in Dairy Cows(MDPI (Basel, Switzerland), 2021-07-14) Hunter LB; Haskell MJ; Langford FM; O'Connor C; Webster JR; Stafford KJ; Van Eerdenburg FJCMChanges to the amount and patterns of sleep stages could be a useful tool to assess the effects of stress or changes to the environment in animal welfare research. However, the gold standard method, polysomnography PSG, is difficult to use with large animals such as dairy cows. Heart rate (HR) and heart rate variability (HRV) can be used to predict sleep stages in humans and could be useful as an easier method to identify sleep stages in cows. We compared the mean HR and HRV and lying posture of dairy cows at pasture and when housed, with sleep stages identified through PSG. HR and HRV were higher when cows were moving their heads or when lying flat on their side. Overall, mean HR decreased with depth of sleep. There was more variability in time between successive heart beats during REM sleep, and more variability in time between heart beats when cows were awake and in REM sleep. These shifts in HR measures between sleep stages followed similar patterns despite differences in mean HR between the groups. Our results show that HR and HRV measures could be a promising alternative method to PSG for assessing sleep in dairy cows.
- ItemMachine learning prediction of sleep stages in dairy cows from heart rate and muscle activity measures.(Springer Nature Limited, 2021-05-25) Hunter LB; Baten A; Haskell MJ; Langford FM; O'Connor C; Webster JR; Stafford KSleep is important for cow health and shows promise as a tool for assessing welfare, but methods to accurately distinguish between important sleep stages are difficult and impractical to use with cattle in typical farm environments. The objective of this study was to determine if data from more easily applied non-invasive devices assessing neck muscle activity and heart rate (HR) alone could be used to differentiate between sleep stages. We developed, trained, and compared two machine learning models using neural networks and random forest algorithms to predict sleep stages from 15 variables (features) of the muscle activity and HR data collected from 12 cows in two environments. Using k-fold cross validation we compared the success of the models to the gold standard, Polysomnography (PSG). Overall, both models learned from the data and were able to accurately predict sleep stages from HR and muscle activity alone with classification accuracy in the range of similar human models. Further research is required to validate the models with a larger sample size, but the proposed methodology appears to give an accurate representation of sleep stages in cattle and could consequentially enable future sleep research into conditions affecting cow sleep and welfare.