Browsing by Author "Keyse J"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemA novel widespread cryptic species and phylogeographic patterns within several giant clam species (Cardiidae: Tridacna) from the Indo-Pacific Ocean.(PUBLIC LIBRARY SCIENCE, 2013) Huelsken T; Keyse J; Liggins L; Penny S; Treml EA; Riginos CGiant clams (genus Tridacna) are iconic coral reef animals of the Indian and Pacific Oceans, easily recognizable by their massive shells and vibrantly colored mantle tissue. Most Tridacna species are listed by CITES and the IUCN Redlist, as their populations have been extensively harvested and depleted in many regions. Here, we survey Tridacna crocea and Tridacna maxima from the eastern Indian and western Pacific Oceans for mitochondrial (COI and 16S) and nuclear (ITS) sequence variation and consolidate these data with previous published results using phylogenetic analyses. We find deep intraspecific differentiation within both T. crocea and T. maxima. In T. crocea we describe a previously undocumented phylogeographic division to the east of Cenderawasih Bay (northwest New Guinea), whereas for T. maxima the previously described, distinctive lineage of Cenderawasih Bay can be seen to also typify western Pacific populations. Furthermore, we find an undescribed, monophyletic group that is evolutionarily distinct from named Tridacna species at both mitochondrial and nuclear loci. This cryptic taxon is geographically widespread with a range extent that minimally includes much of the central Indo-Pacific region. Our results reinforce the emerging paradigm that cryptic species are common among marine invertebrates, even for conspicuous and culturally significant taxa. Additionally, our results add to identified locations of genetic differentiation across the central Indo-Pacific and highlight how phylogeographic patterns may differ even between closely related and co-distributed species.
- ItemNot the time or the place: the missing spatio-temporal link in publicly available genetic data.(Blackwell Publishing Ltd, 2015-08) Pope LC; Liggins L; Keyse J; Carvalho SB; Riginos CGenetic data are being generated at unprecedented rates. Policies of many journals, institutions and funding bodies aim to ensure that these data are publicly archived so that published results are reproducible. Additionally, publicly archived data can be 'repurposed' to address new questions in the future. In 2011, along with other leading journals in ecology and evolution, Molecular Ecology implemented mandatory public data archiving (the Joint Data Archiving Policy). To evaluate the effect of this policy, we assessed the genetic, spatial and temporal data archived for 419 data sets from 289 articles in Molecular Ecology from 2009 to 2013. We then determined whether archived data could be used to reproduce analyses as presented in the manuscript. We found that the journal's mandatory archiving policy has had a substantial positive impact, increasing genetic data archiving from 49 (pre-2011) to 98% (2011-present). However, 31% of publicly archived genetic data sets could not be recreated based on information supplied in either the manuscript or public archives, with incomplete data or inconsistent codes linking genetic data and metadata as the primary reasons. While the majority of articles did provide some geographic information, 40% did not provide this information as geographic coordinates. Furthermore, a large proportion of articles did not contain any information regarding date of sampling (40%). Although the inclusion of spatio-temporal data does require an increase in effort, we argue that the enduring value of publicly accessible genetic data to the molecular ecology field is greatly compromised when such metadata are not archived alongside genetic data.